We analyze the benefits and shortcomings of a thermal control in nanoscale electronic conductors by means of the contact heating scheme. Ideally, this straightforward approach allows one to apply a known thermal bias across nanostructures directly through metallic leads, avoiding conventional substrate intermediation. We show, by using the average noise thermometry and local noise sensing technique in InAs nanowire-based devices, that a nanoscale metallic constriction on a SiO2 substrate acts like a diffusive conductor with negligible electron-phonon relaxation and non-ideal leads. The non-universal impact of the leads on the achieved thermal bias--which depends on their dimensions, shape and material composition--is hard to minimize, but is possible to accurately calibrate in a properly designed nano-device. Our results allow to reduce the issue of the thermal bias calibration to the knowledge of the heater resistance and pave the way for accurate thermoelectric or similar measurements at the nanoscale.

Strategy for accurate thermal biasing at the nanoscale

Rossella F
;
Rocci M;Sorba L;Roddaro S;
2020

Abstract

We analyze the benefits and shortcomings of a thermal control in nanoscale electronic conductors by means of the contact heating scheme. Ideally, this straightforward approach allows one to apply a known thermal bias across nanostructures directly through metallic leads, avoiding conventional substrate intermediation. We show, by using the average noise thermometry and local noise sensing technique in InAs nanowire-based devices, that a nanoscale metallic constriction on a SiO2 substrate acts like a diffusive conductor with negligible electron-phonon relaxation and non-ideal leads. The non-universal impact of the leads on the achieved thermal bias--which depends on their dimensions, shape and material composition--is hard to minimize, but is possible to accurately calibrate in a properly designed nano-device. Our results allow to reduce the issue of the thermal bias calibration to the knowledge of the heater resistance and pave the way for accurate thermoelectric or similar measurements at the nanoscale.
2020
Istituto Nanoscienze - NANO
---
File in questo prodotto:
File Dimensione Formato  
1812.06463v2.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Altro tipo di licenza
Dimensione 2.15 MB
Formato Adobe PDF
2.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/378571
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact