As the possibility to decouple temporal and spatial variations of the electromagnetic field, leading to a wavelength stretching, has been recognized to be of paramount importance for practical applications, we generalize the idea of stretchability from the framework of electromagnetic waves to massive particles. A necessary and sufficient condition which allows one to identify energetically stable configuration of a 1D quantum particle characterized by arbitrary large spatial regions where the associated wave-function exhibit a flat, non-zero profile is presented, together with examples on well-known and widely used potential profiles and an application to 2D models.
Stretching potential engineering
De Pasquale A;Giovannetti V
2020
Abstract
As the possibility to decouple temporal and spatial variations of the electromagnetic field, leading to a wavelength stretching, has been recognized to be of paramount importance for practical applications, we generalize the idea of stretchability from the framework of electromagnetic waves to massive particles. A necessary and sufficient condition which allows one to identify energetically stable configuration of a 1D quantum particle characterized by arbitrary large spatial regions where the associated wave-function exhibit a flat, non-zero profile is presented, together with examples on well-known and widely used potential profiles and an application to 2D models.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.