Placental growth factor (PlGF) belongs to the same family as the vascular endothelial growth factor A (VEGF-A). Recent gene inactivation studies in mice have demonstrated that loss of PlGF does not affect development, reproduction, or normal postnatal life. However, the mice show significantly impaired angiogenesis and arteriogenesis during pathological conditions such as ischemia and tumor formation, conditions in which the expression of VEGF-A is normally increased. Mice expressing a truncated form of the specific receptor for PlGF, the VEGF receptor 1 (VEGFR-1), show impaired angiogenesis similar to that observed in Plgf(-/-)mice. These data suggest a pivotal role for PlGF and VEGFR-1 in regulating VEGF-A-dependent angiogenesis under pathological conditions. VEGF-A has been utilized for the therapeutic stimulation of new blood vessels in ischemic hearts and limbs, with controversial results from the initial clinical experience. This review discusses the possibility of using the PlGF/VEGFR-1 pathway as an alternative target for angiogenic therapy.

Structure and function of placental growth factor

De Falco S;
2002

Abstract

Placental growth factor (PlGF) belongs to the same family as the vascular endothelial growth factor A (VEGF-A). Recent gene inactivation studies in mice have demonstrated that loss of PlGF does not affect development, reproduction, or normal postnatal life. However, the mice show significantly impaired angiogenesis and arteriogenesis during pathological conditions such as ischemia and tumor formation, conditions in which the expression of VEGF-A is normally increased. Mice expressing a truncated form of the specific receptor for PlGF, the VEGF receptor 1 (VEGFR-1), show impaired angiogenesis similar to that observed in Plgf(-/-)mice. These data suggest a pivotal role for PlGF and VEGFR-1 in regulating VEGF-A-dependent angiogenesis under pathological conditions. VEGF-A has been utilized for the therapeutic stimulation of new blood vessels in ischemic hearts and limbs, with controversial results from the initial clinical experience. This review discusses the possibility of using the PlGF/VEGFR-1 pathway as an alternative target for angiogenic therapy.
2002
Istituto di genetica e biofisica "Adriano Buzzati Traverso"- IGB - Sede Napoli
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/37865
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 128
  • ???jsp.display-item.citation.isi??? 121
social impact