What is the function of cognition? On one influential account, cognition evolved to co-ordinate behaviour with environmental change or complexity (Godfrey-Smith in Complexity and the function of mind in nature, Cambridge Studies in Philosophy and Biology, Cambridge University Press, Cambridge, 1996). Liberal interpretations of this view ascribe cognition to an extraordinarily broad set of biological systems-even bacteria, which modulate their activity in response to salient external cues, would seem to qualify as cognitive agents. However, equating cognition with adaptive flexibility per se glosses over important distinctions in the way biological organisms deal with environmental complexity. Drawing on contemporary advances in theoretical biology and computational neuroscience, we cash these distinctions out in terms of different kinds of generative models, and the representational and uncertainty-resolving capacities they afford. This analysis leads us to propose a formal criterion for delineating cognition from other, more pervasive forms of adaptive plasticity. On this view, biological cognition is rooted in a particular kind of functional organisation; namely, that which enables the agent to detach from the present and engage in counterfactual (active) inference.

From allostatic agents to counterfactual cognisers: active inference, biological regulation, and the origins of cognition

Pezzulo Giovanni;
2020

Abstract

What is the function of cognition? On one influential account, cognition evolved to co-ordinate behaviour with environmental change or complexity (Godfrey-Smith in Complexity and the function of mind in nature, Cambridge Studies in Philosophy and Biology, Cambridge University Press, Cambridge, 1996). Liberal interpretations of this view ascribe cognition to an extraordinarily broad set of biological systems-even bacteria, which modulate their activity in response to salient external cues, would seem to qualify as cognitive agents. However, equating cognition with adaptive flexibility per se glosses over important distinctions in the way biological organisms deal with environmental complexity. Drawing on contemporary advances in theoretical biology and computational neuroscience, we cash these distinctions out in terms of different kinds of generative models, and the representational and uncertainty-resolving capacities they afford. This analysis leads us to propose a formal criterion for delineating cognition from other, more pervasive forms of adaptive plasticity. On this view, biological cognition is rooted in a particular kind of functional organisation; namely, that which enables the agent to detach from the present and engage in counterfactual (active) inference.
2020
Istituto di Scienze e Tecnologie della Cognizione - ISTC
Complexity
Uncertainty
Cognition
Allostasis
Homeostasis
Free energy principle
Active inference
Environmental complexity thesis
Adaptation
Representation
Interoception
Biorhythms
Life-mind continuity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/378805
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 95
social impact