Recent evidence has shown that graphene quantum dots (GQDs) are capable of crossing the blood-brain barrier, the barrier that reduces cancer therapy efficacy. Here, we tested three alternative GQDs' surface chemistries on two neural lineages (glioblastoma cells and mouse cortical neurons). We showed that surface chemistry modulates GQDs' biocompatibility. When used in combination with the chemotherapeutic drug doxorubicin, GDQs exerted a synergistic effect on tumor cells, but not on neurons. This appears to be mediated by the modification of membrane permeability induced by the surface of GQDs. Our findings highlight that GQDs can be adopted as a suitable delivery and therapeutic strategy for the treatment of glioblastoma, by both directly destabilizing the cell membrane and indirectly increasing the efficacy of chemotherapeutic drugs.

Graphene quantum dots' surface chemistry modulates the sensitivity of glioblastoma cells to chemotherapeutics

Palmieri V.;Rinaldi M.;Fioretti D.;Papi M.
2020

Abstract

Recent evidence has shown that graphene quantum dots (GQDs) are capable of crossing the blood-brain barrier, the barrier that reduces cancer therapy efficacy. Here, we tested three alternative GQDs' surface chemistries on two neural lineages (glioblastoma cells and mouse cortical neurons). We showed that surface chemistry modulates GQDs' biocompatibility. When used in combination with the chemotherapeutic drug doxorubicin, GDQs exerted a synergistic effect on tumor cells, but not on neurons. This appears to be mediated by the modification of membrane permeability induced by the surface of GQDs. Our findings highlight that GQDs can be adopted as a suitable delivery and therapeutic strategy for the treatment of glioblastoma, by both directly destabilizing the cell membrane and indirectly increasing the efficacy of chemotherapeutic drugs.
2020
Istituto dei Sistemi Complessi - ISC
FARMACOLOGIA TRASLAZIONALE - IFT
nanomedicine; graphene quantum dots; glioblastoma; cancer treatment; synergistic therapy
File in questo prodotto:
File Dimensione Formato  
prod_431020-doc_154129.pdf

accesso aperto

Descrizione: Graphene quantum dots' surface chemistry modulates the sensitivity of glioblastoma cells to chemotherapeutics
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.52 MB
Formato Adobe PDF
2.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/378909
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? ND
social impact