Hole-doped perovskite bismuthates such as Ba1-xKxBiO3 and Sr1-xKxBiO3 are well-known bismuth-based oxide high-transition-temperature superconductors. Reported thin bismuthate films show relatively low quality, likely due to their large lattice mismatch with the substrate and a low sticking coefficient of Bi at high temperatures. Here, we report the successful epitaxial thin film growth of the parent compound strontium bismuthate SrBiO3 on SrO-terminated SrTiO3 (001) substrates by molecular beam epitaxy. Two different growth methods, high-temperature codeposition or recrystallization cycles of low-temperature deposition plus high-temperature annealing, are developed to improve the epitaxial growth. SrBiO3 has a pseudocubic lattice constant approximate to 4.25 angstrom and an approximate to 8.8% lattice mismatch on SrTiO3 substrate, leading to a large strain in the first few unit cells. Films thicker than 6 unit cells prepared by both methods are fully relaxed to bulk lattice constant and have similar quality. Compared to high-temperature codeposition, the recrystallization method can produce higher quality 1- to 6-unit cell films that are coherently or partially strained. Photoemission experiments reveal the bonding and antibonding states close to the Fermi level due to Bi and O hybridization, in good agreement with density functional theory calculations. This work provides general guidance to the synthesis of high-quality perovskite bismuthate films.

Epitaxial growth of perovskite SrBiO3 film on SrTiO3 by oxide molecular beam epitaxy

Davidson Bruce A;
2019

Abstract

Hole-doped perovskite bismuthates such as Ba1-xKxBiO3 and Sr1-xKxBiO3 are well-known bismuth-based oxide high-transition-temperature superconductors. Reported thin bismuthate films show relatively low quality, likely due to their large lattice mismatch with the substrate and a low sticking coefficient of Bi at high temperatures. Here, we report the successful epitaxial thin film growth of the parent compound strontium bismuthate SrBiO3 on SrO-terminated SrTiO3 (001) substrates by molecular beam epitaxy. Two different growth methods, high-temperature codeposition or recrystallization cycles of low-temperature deposition plus high-temperature annealing, are developed to improve the epitaxial growth. SrBiO3 has a pseudocubic lattice constant approximate to 4.25 angstrom and an approximate to 8.8% lattice mismatch on SrTiO3 substrate, leading to a large strain in the first few unit cells. Films thicker than 6 unit cells prepared by both methods are fully relaxed to bulk lattice constant and have similar quality. Compared to high-temperature codeposition, the recrystallization method can produce higher quality 1- to 6-unit cell films that are coherently or partially strained. Photoemission experiments reveal the bonding and antibonding states close to the Fermi level due to Bi and O hybridization, in good agreement with density functional theory calculations. This work provides general guidance to the synthesis of high-quality perovskite bismuthate films.
2019
Istituto Officina dei Materiali - IOM -
superconductivity
complex oxides
thin films
molecular beam epitaxy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/379071
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact