Solid-state quantum emitters are a mainstay of quantum nanophotonics as integrated single-photon sources (SPS) and optical nanoprobes. Integrating such emitters with active nanophotonic elements is desirable in order to attain efficient control of their optical properties, but it typically degrades the photostability of the emitter itself. Here, we demonstrate a tunable hybrid device that integrates state of the art lifetime-limited single emitters (line width similar to 40 MHz) and 2D materials at subwavelength separation without degradation of the emission properties. Our device's nanoscale dimensions enable ultrabroadband tuning (tuning range >400 GHz) and fast modulation (frequency similar to 100 MHz) of the emission energy, which renders it an integrated, ultracompact tunable SPS. Conversely, this offers a novel approach to optical sensing of 2D material properties using a single emitter as a nanoprobe.

Electrical Control of Lifetime-Limited Quantum Emitters Using 2D Materials

Pazzagli Sofia;Lombardi Pietro;Toninelli Costanza;
2019

Abstract

Solid-state quantum emitters are a mainstay of quantum nanophotonics as integrated single-photon sources (SPS) and optical nanoprobes. Integrating such emitters with active nanophotonic elements is desirable in order to attain efficient control of their optical properties, but it typically degrades the photostability of the emitter itself. Here, we demonstrate a tunable hybrid device that integrates state of the art lifetime-limited single emitters (line width similar to 40 MHz) and 2D materials at subwavelength separation without degradation of the emission properties. Our device's nanoscale dimensions enable ultrabroadband tuning (tuning range >400 GHz) and fast modulation (frequency similar to 100 MHz) of the emission energy, which renders it an integrated, ultracompact tunable SPS. Conversely, this offers a novel approach to optical sensing of 2D material properties using a single emitter as a nanoprobe.
2019
Istituto Nazionale di Ottica - INO
Single molecules
2D materials
electrical control
single photon source
Stark effect
lifetime-limited line width
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/379320
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? ND
social impact