Bioluminescence Imaging (BLI) is an important molecular imaging tool to assess complex biological processes in vivo. BLI is a sensitive technique, which is frequently used in small-animal preclinical research, mainly in oncology and neurology. Tracking of labeled cells is one of the major applications. However, BLI data analysis for the segmentation of up-taking regions and their quantification is not trivial and it is usually an operator-dependent activity. In this work, a proof of concept of an automatic method to analyze BL images is presented which is based on a multi-step approach. Different segmentation algorithms (K-means, Gaussian Mixture Model (GMM), and GMM initialized by K-means) were evaluated and an adequate image normalization step was suggested to include the background bioluminescence in the data analysis process. K-means segmentation is the most stable and accurate approach for different levels of signal intensity.

Proof of Concept of an Automatic Tool for Bioluminescence Imaging Data Analysis

Mastropietro Alfonso;
2015

Abstract

Bioluminescence Imaging (BLI) is an important molecular imaging tool to assess complex biological processes in vivo. BLI is a sensitive technique, which is frequently used in small-animal preclinical research, mainly in oncology and neurology. Tracking of labeled cells is one of the major applications. However, BLI data analysis for the segmentation of up-taking regions and their quantification is not trivial and it is usually an operator-dependent activity. In this work, a proof of concept of an automatic method to analyze BL images is presented which is based on a multi-step approach. Different segmentation algorithms (K-means, Gaussian Mixture Model (GMM), and GMM initialized by K-means) were evaluated and an adequate image normalization step was suggested to include the background bioluminescence in the data analysis process. K-means segmentation is the most stable and accurate approach for different levels of signal intensity.
2015
n.a.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/379416
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact