This work presents an overview of the potential of microwave indices obtained from multi-frequency/polarization radiometry in detecting the characteristics of land surfaces, in particular soil covered by vegetation or snow and agricultural bare soils. Experimental results obtained with ground-based radiometers on different types of natural surfaces by the Microwave Remote Sensing Group of IFAC-CNR starting from 80s, are summarized and interpreted by means of theoretical models. It has been pointed out that, with respect to single frequency/polarization observations, microwave indices revealed a higher sensitivity to some significant parameters, which characterize the hydrological cycle, namely: soil moisture, vegetation biomass and snow depth or snow water equivalent. Electromagnetic models have then been used for simulating brightness temperature and microwave indices from land surfaces. As per vegetation covered soils, the well-known tau-omega (-) model based on the radiative transfer theory has been used, whereas terrestrial snow cover has been simulated using a multi-layer dense-medium radiative transfer model (DMRT). On the basis of these results, operational inversion algorithms for the retrieval of those hydrological quantities have been successfully implemented using multi-channel data from the microwave radiometric sensors operating from satellite.

Radiometric Microwave Indices for Remote Sensing of Land Surfaces

Paloscia Simonetta;Pampaloni Paolo;Santi Emanuele
2018

Abstract

This work presents an overview of the potential of microwave indices obtained from multi-frequency/polarization radiometry in detecting the characteristics of land surfaces, in particular soil covered by vegetation or snow and agricultural bare soils. Experimental results obtained with ground-based radiometers on different types of natural surfaces by the Microwave Remote Sensing Group of IFAC-CNR starting from 80s, are summarized and interpreted by means of theoretical models. It has been pointed out that, with respect to single frequency/polarization observations, microwave indices revealed a higher sensitivity to some significant parameters, which characterize the hydrological cycle, namely: soil moisture, vegetation biomass and snow depth or snow water equivalent. Electromagnetic models have then been used for simulating brightness temperature and microwave indices from land surfaces. As per vegetation covered soils, the well-known tau-omega (-) model based on the radiative transfer theory has been used, whereas terrestrial snow cover has been simulated using a multi-layer dense-medium radiative transfer model (DMRT). On the basis of these results, operational inversion algorithms for the retrieval of those hydrological quantities have been successfully implemented using multi-channel data from the microwave radiometric sensors operating from satellite.
2018
Istituto di Fisica Applicata - IFAC
microwave radiometry
microwave indices
soil moisture content
vegetation biomass
snow cover characteristics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/379582
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 11
social impact