Precise time-dependent measurements of the Z = 2 component in the cosmic radiation provide crucial information about the propagation of charged particles through the heliosphere. The PAMELA experiment, with its long flight duration (2006 June 15-2016 January 23) and the low energy threshold (80 MeV/n) is an ideal detector for cosmic-ray solar modulation studies. In this paper, the helium nuclei spectra measured by the PAMELA instrument from 2006 July to 2009 December over a Carrington rotation time basis are presented. A state-of-the-art three-dimensional model for cosmic-ray propagation inside the heliosphere was used to interpret the time-dependent measured fluxes. Proton-to-helium flux ratio time profiles at various rigidities are also presented in order to study any features that could result from the different masses and local interstellar spectra shapes.

Time dependence of the flux of helium nuclei in cosmic rays measured by the pamela experiment between 2006 july and 2009 december

Castellini G;Ricciarini SB;
2020

Abstract

Precise time-dependent measurements of the Z = 2 component in the cosmic radiation provide crucial information about the propagation of charged particles through the heliosphere. The PAMELA experiment, with its long flight duration (2006 June 15-2016 January 23) and the low energy threshold (80 MeV/n) is an ideal detector for cosmic-ray solar modulation studies. In this paper, the helium nuclei spectra measured by the PAMELA instrument from 2006 July to 2009 December over a Carrington rotation time basis are presented. A state-of-the-art three-dimensional model for cosmic-ray propagation inside the heliosphere was used to interpret the time-dependent measured fluxes. Proton-to-helium flux ratio time profiles at various rigidities are also presented in order to study any features that could result from the different masses and local interstellar spectra shapes.
2020
Istituto di Fisica Applicata - IFAC
COSMIC RAYS
DARK MATTER
ANTIPROTONS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/379640
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? ND
social impact