Waveguide structures are very popular in the microwave power industry due to their power handling capabilities. Modal expansion of the waveguide fields and application of the circuit theory allow for the division of a complex device into several simpler sections which can be analyzed separately with the best suited method. The modal techniques can be divided into two groups - those which analyze junctions or discontinuities and those which examine propagation characteristics. In this paper, a review of modal techniques for high power applications is given. Modal expansion of the fields in the waveguides is then performed and applied to modeling of k-furcated waveguides. The modal analysis based on the Coupled Mode Method is described for the waveguides partially filled with isotropic materials. A hybrid modal analysis coupled with Finite Element Method suitable for more complex waveguide structures is also described. Computational results obtained for some real-life microwave devices are presented. Excellent agreement was found when comparing the results with those generated with a commercial FDTD simulator demonstrates the validity and reliability of the proposed method.

Modeling Microwave Power Structures Based on K-Furcated Waveguides Arbitrarily Filled with Materials by Modal Techniques

Pitarch Jaime
Primo
;
2007

Abstract

Waveguide structures are very popular in the microwave power industry due to their power handling capabilities. Modal expansion of the waveguide fields and application of the circuit theory allow for the division of a complex device into several simpler sections which can be analyzed separately with the best suited method. The modal techniques can be divided into two groups - those which analyze junctions or discontinuities and those which examine propagation characteristics. In this paper, a review of modal techniques for high power applications is given. Modal expansion of the fields in the waveguides is then performed and applied to modeling of k-furcated waveguides. The modal analysis based on the Coupled Mode Method is described for the waveguides partially filled with isotropic materials. A hybrid modal analysis coupled with Finite Element Method suitable for more complex waveguide structures is also described. Computational results obtained for some real-life microwave devices are presented. Excellent agreement was found when comparing the results with those generated with a commercial FDTD simulator demonstrates the validity and reliability of the proposed method.
2007
Istituto di Scienze Marine - ISMAR
Modal analysis
non-homogeneous media
partially-filled waveguides
scattering matrices
waveguides discontinuities
File in questo prodotto:
File Dimensione Formato  
08327823.2006.11688569.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.31 MB
Formato Adobe PDF
2.31 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/379653
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact