Timelike geodesics on a hyperplane orthogonal to the symmetry axis of the Godel spacetime appear to be elliptic-like if standard coordinates naturally adapted to the cylindrical symmetry are used. The orbit can then be suitably described through an eccentricity-semi-latus rectum parametrization, familiar from the Newtonian dynamics of a two-body system. However, changing coordinates such planar geodesics all become explicitly circular, as exhibited by Kundt's form of the Godel metric. We derive here a one-to-one correspondence between the constants of the motion along these geodesics as well as between the parameter spaces of elliptic-like versus circular geodesics. We also show how to connect the two equivalent descriptions of particle motion by introducing a pair of complex coordinates in the 2-planes orthogonal to the symmetry axis, which brings the metric into a form which is invariant under Mobius transformations preserving the symmetries of the orbit, i.e., taking circles to circles.
Godel spacetime, planar geodesics and the Mobius map
Bini DonatoMembro del Collaboration Group
;Geralico AndreaMembro del Collaboration Group
;
2020
Abstract
Timelike geodesics on a hyperplane orthogonal to the symmetry axis of the Godel spacetime appear to be elliptic-like if standard coordinates naturally adapted to the cylindrical symmetry are used. The orbit can then be suitably described through an eccentricity-semi-latus rectum parametrization, familiar from the Newtonian dynamics of a two-body system. However, changing coordinates such planar geodesics all become explicitly circular, as exhibited by Kundt's form of the Godel metric. We derive here a one-to-one correspondence between the constants of the motion along these geodesics as well as between the parameter spaces of elliptic-like versus circular geodesics. We also show how to connect the two equivalent descriptions of particle motion by introducing a pair of complex coordinates in the 2-planes orthogonal to the symmetry axis, which brings the metric into a form which is invariant under Mobius transformations preserving the symmetries of the orbit, i.e., taking circles to circles.File | Dimensione | Formato | |
---|---|---|---|
2002.11432v1.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Altro tipo di licenza
Dimensione
441.3 kB
Formato
Adobe PDF
|
441.3 kB | Adobe PDF | Visualizza/Apri |
s10714-020-02731-w.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
490.9 kB
Formato
Adobe PDF
|
490.9 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.