Flue gas purification experiments were performed with a membrane made from the ultrapermeable polymer of intrinsic microporosity (PIM) based on tetramethyltetrahydronaphthalene unit coupled with bicyclic triptycene (PIM-TMN-Trip). Permeation experiments with a CO2-N2-O2-SO2 mixture, simulating flue gas from power plants, were performed by means of an in-house developed permeation unit. The results showed very high permeability of the membrane for sulfur dioxide SO2 and high permeability of CO2, lying mainly between the Robeson upper bound form 2008 and the recently reported upper bound from 2019. Moderately high mixed gas selectivity of SO2 and CO2 with respect to N2 (21-29 and 11-18, respectively), in combination with very high permeability (28·10 and 30·10 Barrer, respectively), suggest potential use for industrial gas separation processes. The SO2/CO2 mixed gas selectivity was relatively low (around 1.8), but comparable with other novel membranes, and both are removed simultaneously in the process of CO2 separation.

Flue gas purification with membranes based on the polymer of intrinsic microporosity PIM-TMN-Trip

JC Jansen;
2020

Abstract

Flue gas purification experiments were performed with a membrane made from the ultrapermeable polymer of intrinsic microporosity (PIM) based on tetramethyltetrahydronaphthalene unit coupled with bicyclic triptycene (PIM-TMN-Trip). Permeation experiments with a CO2-N2-O2-SO2 mixture, simulating flue gas from power plants, were performed by means of an in-house developed permeation unit. The results showed very high permeability of the membrane for sulfur dioxide SO2 and high permeability of CO2, lying mainly between the Robeson upper bound form 2008 and the recently reported upper bound from 2019. Moderately high mixed gas selectivity of SO2 and CO2 with respect to N2 (21-29 and 11-18, respectively), in combination with very high permeability (28·10 and 30·10 Barrer, respectively), suggest potential use for industrial gas separation processes. The SO2/CO2 mixed gas selectivity was relatively low (around 1.8), but comparable with other novel membranes, and both are removed simultaneously in the process of CO2 separation.
2020
Istituto per la Tecnologia delle Membrane - ITM
Flue gas purification
Gas permeation
Membrane gas separation
Polymer of intrinsic microporosity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/379804
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact