In order to establish whether the first lines of divergence in the Bacteria domain were the mesophilic or the hyperthermophilic organisms, we have performed a phylogenetic analysis on a concatenamer obtained from the fusion of 20 different proteins. The phylogenetic analysis carried out using five different methods has shown that, contrary to what is reported in the literature [Brochier, C., Philippe, H., 2002. A non-hyperthermophilic ancestor for Bacteria. Nature 417, 244], it was probably the hyperthermophilic organisms, the Thermotogales and the Aquificales, which were the first lines of divergence in the Bacteria domain, and not the mesophilic Planctomycetales. This strengthens the hypothesis that the last universal common ancestor might have been a hyperthermophilic 'organism' and that, more generally, life might have originated at high temperature.
The first lines of divergence in the Bacteria domain were the hyperthermophilic organisms, the Thermotogales and the Aquificales, and not the mesophilic Planctomycetales
Di Giulio M
2007
Abstract
In order to establish whether the first lines of divergence in the Bacteria domain were the mesophilic or the hyperthermophilic organisms, we have performed a phylogenetic analysis on a concatenamer obtained from the fusion of 20 different proteins. The phylogenetic analysis carried out using five different methods has shown that, contrary to what is reported in the literature [Brochier, C., Philippe, H., 2002. A non-hyperthermophilic ancestor for Bacteria. Nature 417, 244], it was probably the hyperthermophilic organisms, the Thermotogales and the Aquificales, which were the first lines of divergence in the Bacteria domain, and not the mesophilic Planctomycetales. This strengthens the hypothesis that the last universal common ancestor might have been a hyperthermophilic 'organism' and that, more generally, life might have originated at high temperature.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.