Here, we share image stacks acquired under total internal reflection fluorescence (TIRF) microscopy and representative trajectories of single myosin-5B molecules labelled with Quantum Dots (QD-myo-5B) moving along actin filaments at different ATP concentrations (0.3-1000 mM). Localization of QD-myo-5B was performed with the PROOF software, which is freely available [1]. The data can be valuable for researchers interested in molecular motors motility, both from an experimental and modeling point of view, as well as to researchers developing single particle tracking algorithms. The data is related to the research article "Dissecting myosin-5B mechanosensitivity and calcium regulation at the single molecule level" Gardini et al., 2015. (c) 2019 The Authors. Published by Elsevier Inc.

Myosin-5B is one of three members of the myosin-5 family of actin-based molecular motors fundamental in recycling endosome trafficking and collective actin network dynamics. Through single-molecule motility assays, we recently demonstrated that myosin-5B can proceed in 36-nm steps along actin filaments as single motor. By analyzing trajectories of single myosin-5B along actin filaments we showed that its velocity is dependent on ATP concentration, while its run length is independent on ATP concentration, as a landmark of processivity.

Myosin V fluorescence imaging dataset for single-molecule localization and tracking

Gardini Lucia;Pavone Francesco Saverio;
2019-01-01

Abstract

Myosin-5B is one of three members of the myosin-5 family of actin-based molecular motors fundamental in recycling endosome trafficking and collective actin network dynamics. Through single-molecule motility assays, we recently demonstrated that myosin-5B can proceed in 36-nm steps along actin filaments as single motor. By analyzing trajectories of single myosin-5B along actin filaments we showed that its velocity is dependent on ATP concentration, while its run length is independent on ATP concentration, as a landmark of processivity.
2019
Istituto Nazionale di Ottica - INO
Here, we share image stacks acquired under total internal reflection fluorescence (TIRF) microscopy and representative trajectories of single myosin-5B molecules labelled with Quantum Dots (QD-myo-5B) moving along actin filaments at different ATP concentrations (0.3-1000 mM). Localization of QD-myo-5B was performed with the PROOF software, which is freely available [1]. The data can be valuable for researchers interested in molecular motors motility, both from an experimental and modeling point of view, as well as to researchers developing single particle tracking algorithms. The data is related to the research article "Dissecting myosin-5B mechanosensitivity and calcium regulation at the single molecule level" Gardini et al., 2015. (c) 2019 The Authors. Published by Elsevier Inc.
Total internal reflection fluorescence (TIRF) microscopy
Myosin
Single molecule biophysics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/379850
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact