Recent results of the LARASE research program in terms of model improvements and relativistic measurements are presented. In particular, the results regarding the development of new models for the non-gravitational perturbations that affect the orbit of the LAGEOS and LARES satellites are described and discussed. These are subtle and complex effects that need a deep knowledge of the structure and the physical characteristics of the satellites in order to be correctly accounted for. In the field of gravitational measurements, we present a new measurement of the relativistic Lense-Thirring precession with a 0.5% precision. In this measurement, together with the relativistic effect we also estimated two even zonal harmonics coefficients. The uncertainties of the even zonal harmonics of the gravitational field of the Earth have been responsible, until now, of the larger systematic uncertainty in the error budget of this kind of measurements. For this reason, the role of the errors related to the model used for the gravitational field of the Earth in these measurements is discussed. In particular, emphasis is given to GRACE temporal models, that strongly help to reduce this kind of systematic errors.

General relativity measurements in the field of earth with laser-ranged satellites: State of the art and perspectives

Anselmo L;Pardini C;
2019

Abstract

Recent results of the LARASE research program in terms of model improvements and relativistic measurements are presented. In particular, the results regarding the development of new models for the non-gravitational perturbations that affect the orbit of the LAGEOS and LARES satellites are described and discussed. These are subtle and complex effects that need a deep knowledge of the structure and the physical characteristics of the satellites in order to be correctly accounted for. In the field of gravitational measurements, we present a new measurement of the relativistic Lense-Thirring precession with a 0.5% precision. In this measurement, together with the relativistic effect we also estimated two even zonal harmonics coefficients. The uncertainties of the even zonal harmonics of the gravitational field of the Earth have been responsible, until now, of the larger systematic uncertainty in the error budget of this kind of measurements. For this reason, the role of the errors related to the model used for the gravitational field of the Earth in these measurements is discussed. In particular, emphasis is given to GRACE temporal models, that strongly help to reduce this kind of systematic errors.
2019
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Satellite laser ranging
LAGEOS satellites
Perturbations
Models
General relativity
Lense-Thirring effect
File in questo prodotto:
File Dimensione Formato  
prod_422764-doc_150378.pdf

accesso aperto

Descrizione: General relativity measurements in the field of earth with laser-ranged satellites: State of the art and perspectives
Tipologia: Versione Editoriale (PDF)
Dimensione 3.27 MB
Formato Adobe PDF
3.27 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/379907
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 25
social impact