Compelling evidence has shown that microRNAs (miRs) are involved in the pathophysiology of BAV-associated aortopathy. The purpose of this study was to assess the biological role as well as the circulating expression of two miRs (miR-424-3p and miR-3688-3p) that have been previously identified as significantly dysregulated in thoracic aortic aneurysm specimens of BAV patients. Bioinformatic tools were used to predict miR gene targets followed by functional validation transfecting synthetic miR mimics and negative controls into human aortic smooth muscle cells (HASMCs). Levels of miRs and target genes were evaluated by qRT-PCR. The circulating miR expression profile analysis was assessed on plasma samples collected from a cohort of 72 patients with aortopathy including 39 BAV (33 males; 58 +/- 13 years) and 33 TAV patients (26 males; 67 +/- 9 years). Computational analysis revealed that SMAD7 and YAP1 were potential targets of miR-424-3p and miR-3688-3p, respectively. Transfection with mimics confirmed a significantly decreased gene expression of SMAD7 and YAP1 compared to mimic negative control (p = 0.04 and p = 0.0005, respectively) or blank control (p = 0.01 and p = 0.0007, respectively). Overexpression of miR-3688-3p also significantly upregulated pro-apoptotic caspase-3 gene expression compared to mimic negative control (p = 0.02) or blank control (p = 0.01). Furthermore, a significant down-regulation of the circulating miR-424-3p was observed in BAV compared to TAV patients (p = 0.001). In multiple linear regression analysis, the aortic valve morphology (beta = - 0.29, p = 0.04) and the presence of aortic stenosis (beta = - 0.28, p = 0.03) had a significant effect on the miR-424-3p expression. In conclusion, our study demonstrated that miR-424-3p and miR-3688-3p directly targeted SMAD7 and YAP1 in HASMCs, pivotal genes of the TGF-beta and Hippo-signaling pathways. Circulating miR-424-3p was also found to be significantly decreased in BAV patients when compared to TAV patients, especially in patients with aortic stenosis. Further large studies of well-characterized BAV patient cohorts are needed to define the clinical significance of the miR-424-3p.

Functional characterization and circulating expression profile of dysregulated microRNAs in BAV-associated aortopathy

Pulignani Silvia;Borghini Andrea;Foffa Ilenia;Vecoli Cecilia;
2019

Abstract

Compelling evidence has shown that microRNAs (miRs) are involved in the pathophysiology of BAV-associated aortopathy. The purpose of this study was to assess the biological role as well as the circulating expression of two miRs (miR-424-3p and miR-3688-3p) that have been previously identified as significantly dysregulated in thoracic aortic aneurysm specimens of BAV patients. Bioinformatic tools were used to predict miR gene targets followed by functional validation transfecting synthetic miR mimics and negative controls into human aortic smooth muscle cells (HASMCs). Levels of miRs and target genes were evaluated by qRT-PCR. The circulating miR expression profile analysis was assessed on plasma samples collected from a cohort of 72 patients with aortopathy including 39 BAV (33 males; 58 +/- 13 years) and 33 TAV patients (26 males; 67 +/- 9 years). Computational analysis revealed that SMAD7 and YAP1 were potential targets of miR-424-3p and miR-3688-3p, respectively. Transfection with mimics confirmed a significantly decreased gene expression of SMAD7 and YAP1 compared to mimic negative control (p = 0.04 and p = 0.0005, respectively) or blank control (p = 0.01 and p = 0.0007, respectively). Overexpression of miR-3688-3p also significantly upregulated pro-apoptotic caspase-3 gene expression compared to mimic negative control (p = 0.02) or blank control (p = 0.01). Furthermore, a significant down-regulation of the circulating miR-424-3p was observed in BAV compared to TAV patients (p = 0.001). In multiple linear regression analysis, the aortic valve morphology (beta = - 0.29, p = 0.04) and the presence of aortic stenosis (beta = - 0.28, p = 0.03) had a significant effect on the miR-424-3p expression. In conclusion, our study demonstrated that miR-424-3p and miR-3688-3p directly targeted SMAD7 and YAP1 in HASMCs, pivotal genes of the TGF-beta and Hippo-signaling pathways. Circulating miR-424-3p was also found to be significantly decreased in BAV patients when compared to TAV patients, especially in patients with aortic stenosis. Further large studies of well-characterized BAV patient cohorts are needed to define the clinical significance of the miR-424-3p.
2019
Istituto di Fisiologia Clinica - IFC
microRNA
Bicuspid aortic valve
Aortopathy
File in questo prodotto:
File Dimensione Formato  
prod_433425-doc_169510.pdf

solo utenti autorizzati

Descrizione: Functional characterization and circulating expression profile of dysregulated microRNAs in BAV-associated aortopathy
Tipologia: Versione Editoriale (PDF)
Dimensione 723.2 kB
Formato Adobe PDF
723.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/379921
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact