The present work focused on the microstructural, thermal, electrical, and damping characterization of NiMnGa samples produced through a powder pressing and a sintering process; the effect of sintering times and of the starting powder size were evaluated. Moreover, an observation of the evolution of martensitic transformation typical of NiMnGa ferromagnetic shape memory alloy was conducted in comparison with the cast material behavior and in correlation with the material densification. The optimum powder size and sintering time for the process, i.e., 50 µm or lower and 72 h, were identified considering the investigated physical properties of the sintered samples in comparison to the cast material. The corresponding sample showed the best compromise between density, thermal and electrical properties, and damping and functional behaviour. In general, the outcomes of this study could be the basis of a useful tool for production processes that include a sintering step as well as being a starting point for the evaluation of an alternative low cost fabrication method of this alloy.

Physical characterization of sintered Nimnga ferromagnetic shape memory alloy

Villa F;Nespoli A;Fanciulli C;Passaretti F;Villa E
2020

Abstract

The present work focused on the microstructural, thermal, electrical, and damping characterization of NiMnGa samples produced through a powder pressing and a sintering process; the effect of sintering times and of the starting powder size were evaluated. Moreover, an observation of the evolution of martensitic transformation typical of NiMnGa ferromagnetic shape memory alloy was conducted in comparison with the cast material behavior and in correlation with the material densification. The optimum powder size and sintering time for the process, i.e., 50 µm or lower and 72 h, were identified considering the investigated physical properties of the sintered samples in comparison to the cast material. The corresponding sample showed the best compromise between density, thermal and electrical properties, and damping and functional behaviour. In general, the outcomes of this study could be the basis of a useful tool for production processes that include a sintering step as well as being a starting point for the evaluation of an alternative low cost fabrication method of this alloy.
2020
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Electrical properties
Ferromagnetic shape memory alloys
Internal friction
Martensitic transformation
Sintering
Thermal properties
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/380123
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact