We show that a neural network whose output is obtained as the difference of the outputs of two feedforward networks with exponential activation function in the hidden layer and logarithmic activation function in the output node, referred to as log-sum-exp (LSE) network, is a smooth universal approximator of continuous functions over convex, compact sets. By using a logarithmic transform, this class of network maps to a family of subtraction-free ratios of generalized posynomials (GPOS), which we also show to be universal approximators of positive functions over log-convex, compact subsets of the positive orthant. The main advantage of difference-LSE networks with respect to classical feedforward neural networks is that, after a standard training phase, they provide surrogate models for a design that possesses a specific difference-of-convex-functions form, which makes them optimizable via relatively efficient numerical methods. In particular, by adapting an existing difference-of-convex algorithm to these models, we obtain an algorithm for performing an effective optimization-based design. We illustrate the proposed approach by applying it to the data-driven design of a diet for a patient with type-2 diabetes and to a nonconvex optimization problem.

A Universal Approximation Result for Difference of Log-Sum-Exp Neural Networks

Possieri Corrado
2020

Abstract

We show that a neural network whose output is obtained as the difference of the outputs of two feedforward networks with exponential activation function in the hidden layer and logarithmic activation function in the output node, referred to as log-sum-exp (LSE) network, is a smooth universal approximator of continuous functions over convex, compact sets. By using a logarithmic transform, this class of network maps to a family of subtraction-free ratios of generalized posynomials (GPOS), which we also show to be universal approximators of positive functions over log-convex, compact subsets of the positive orthant. The main advantage of difference-LSE networks with respect to classical feedforward neural networks is that, after a standard training phase, they provide surrogate models for a design that possesses a specific difference-of-convex-functions form, which makes them optimizable via relatively efficient numerical methods. In particular, by adapting an existing difference-of-convex algorithm to these models, we obtain an algorithm for performing an effective optimization-based design. We illustrate the proposed approach by applying it to the data-driven design of a diet for a patient with type-2 diabetes and to a nonconvex optimization problem.
2020
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
Neural networks
Optimization
Difference of convex
DCA
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/380201
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? ND
social impact