Au nanostructured film was deposited on mica by room temperature RF sputtering. The growth mechanism of the film was studied analyzing the evolution of the film morphology as a function of its thickness by the atomic forcemicroscopy. In the early stages of a growth the film evolution proceeds by the nucleation and growth of nanoclusters. After a critical thickness the growth of microclusters formed by the joining of nanoclusters in preferential nucleation sites, onto a quasicontinuous film, is observed. We quantified the evolution of the mean nanoclusters height and surface density and of the film roughness. This data were analyzed by the dynamic scaling theory of growing interfaces obtaining the scaling and roughness exponents z and ² whose values suggest a conservative growth process. We also quantified the growth of the microclusters showing that it is consistent with a coalescence/impingement dynamic. About the formation of the microclusters, furthermore, we speculate that their origin is strongly correlated to the features of the sputtering technique in connection with the deposition on a high-diffusivity substrate.

Kinetic growth mechanisms of sputter-deposited Au films on mica: from nanoclusters to nanostructured microclusters

Ruffino F;Torrisi V;Grimaldi MG
2010

Abstract

Au nanostructured film was deposited on mica by room temperature RF sputtering. The growth mechanism of the film was studied analyzing the evolution of the film morphology as a function of its thickness by the atomic forcemicroscopy. In the early stages of a growth the film evolution proceeds by the nucleation and growth of nanoclusters. After a critical thickness the growth of microclusters formed by the joining of nanoclusters in preferential nucleation sites, onto a quasicontinuous film, is observed. We quantified the evolution of the mean nanoclusters height and surface density and of the film roughness. This data were analyzed by the dynamic scaling theory of growing interfaces obtaining the scaling and roughness exponents z and ² whose values suggest a conservative growth process. We also quantified the growth of the microclusters showing that it is consistent with a coalescence/impingement dynamic. About the formation of the microclusters, furthermore, we speculate that their origin is strongly correlated to the features of the sputtering technique in connection with the deposition on a high-diffusivity substrate.
2010
Istituto per la Microelettronica e Microsistemi - IMM
Istituto per la Microelettronica e Microsistemi - IMM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/38021
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact