An electrochemical synthesis which has been optimized to produce layered double hydroxides (LDHs) intercalated with carbon nanomaterials is proposed for the first time. It is based on a one-step procedure which contemporaneously allows for the Ni/Al-LDH synthesis, the reduction of graphene oxide (ERGO) and its intercalation inside the structure. The LDH/ERGO composites were thoroughly characterized by a comprehensive multi-techniques approach in order to verify their structure and morphology. The results confirmed that a LDH structure was observed only if the GO concentration was not higher than 0.2 mg/mL. All the characterizations led to propose a theorization of the synthetic and growth mechanisms of the composites. The best performing material was employed as cathode for the development of a hybrid supercapacitor. The device had a discharge specific capacitance of 880 F g(-1). The promising results obtained in this work embrace the necessity of development of low environmental impact systems; in fact, the proposed hybrid supercapacitor is binder-free, safe, composed of earth abundant elements and able to work in aqueous electrolyte. (c) 2020 Elsevier Ltd. All rights reserved.
Electrosynthesis of Ni/Al layered double hydroxide and re duce d graphene oxide composites for the development of hybrid capacitors
Migliori Andrea;Christian Meganne;Morandi Vittorio;Gazzano Massimo;
2021
Abstract
An electrochemical synthesis which has been optimized to produce layered double hydroxides (LDHs) intercalated with carbon nanomaterials is proposed for the first time. It is based on a one-step procedure which contemporaneously allows for the Ni/Al-LDH synthesis, the reduction of graphene oxide (ERGO) and its intercalation inside the structure. The LDH/ERGO composites were thoroughly characterized by a comprehensive multi-techniques approach in order to verify their structure and morphology. The results confirmed that a LDH structure was observed only if the GO concentration was not higher than 0.2 mg/mL. All the characterizations led to propose a theorization of the synthetic and growth mechanisms of the composites. The best performing material was employed as cathode for the development of a hybrid supercapacitor. The device had a discharge specific capacitance of 880 F g(-1). The promising results obtained in this work embrace the necessity of development of low environmental impact systems; in fact, the proposed hybrid supercapacitor is binder-free, safe, composed of earth abundant elements and able to work in aqueous electrolyte. (c) 2020 Elsevier Ltd. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
prod_438892-doc_171519.pdf
solo utenti autorizzati
Descrizione: Electrosynthesis of Ni/Al layered double hydroxide and reduced graphene oxide composites for the development of hybrid capacitors
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.66 MB
Formato
Adobe PDF
|
2.66 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Elecrosynthesis_postprint.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
2.7 MB
Formato
Adobe PDF
|
2.7 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.