An electrochemical synthesis which has been optimized to produce layered double hydroxides (LDHs) intercalated with carbon nanomaterials is proposed for the first time. It is based on a one-step procedure which contemporaneously allows for the Ni/Al-LDH synthesis, the reduction of graphene oxide (ERGO) and its intercalation inside the structure. The LDH/ERGO composites were thoroughly characterized by a comprehensive multi-techniques approach in order to verify their structure and morphology. The results confirmed that a LDH structure was observed only if the GO concentration was not higher than 0.2 mg/mL. All the characterizations led to propose a theorization of the synthetic and growth mechanisms of the composites. The best performing material was employed as cathode for the development of a hybrid supercapacitor. The device had a discharge specific capacitance of 880 F g(-1). The promising results obtained in this work embrace the necessity of development of low environmental impact systems; in fact, the proposed hybrid supercapacitor is binder-free, safe, composed of earth abundant elements and able to work in aqueous electrolyte. (c) 2020 Elsevier Ltd. All rights reserved.

Electrosynthesis of Ni/Al layered double hydroxide and re duce d graphene oxide composites for the development of hybrid capacitors

Migliori Andrea;Christian Meganne;Morandi Vittorio;Gazzano Massimo;
2021

Abstract

An electrochemical synthesis which has been optimized to produce layered double hydroxides (LDHs) intercalated with carbon nanomaterials is proposed for the first time. It is based on a one-step procedure which contemporaneously allows for the Ni/Al-LDH synthesis, the reduction of graphene oxide (ERGO) and its intercalation inside the structure. The LDH/ERGO composites were thoroughly characterized by a comprehensive multi-techniques approach in order to verify their structure and morphology. The results confirmed that a LDH structure was observed only if the GO concentration was not higher than 0.2 mg/mL. All the characterizations led to propose a theorization of the synthetic and growth mechanisms of the composites. The best performing material was employed as cathode for the development of a hybrid supercapacitor. The device had a discharge specific capacitance of 880 F g(-1). The promising results obtained in this work embrace the necessity of development of low environmental impact systems; in fact, the proposed hybrid supercapacitor is binder-free, safe, composed of earth abundant elements and able to work in aqueous electrolyte. (c) 2020 Elsevier Ltd. All rights reserved.
2021
Istituto per la Microelettronica e Microsistemi - IMM
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
BINDER-FREE ELECTRODE; THERMAL-DECOMPOSITION; CARBON NANOTUBES; HYDROTALCITE
File in questo prodotto:
File Dimensione Formato  
prod_438892-doc_171519.pdf

solo utenti autorizzati

Descrizione: Electrosynthesis of Ni/Al layered double hydroxide and reduced graphene oxide composites for the development of hybrid capacitors
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.66 MB
Formato Adobe PDF
2.66 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Elecrosynthesis_postprint.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 2.7 MB
Formato Adobe PDF
2.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/380236
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 22
social impact