Ultrafast and sensitive (noise equivalent power <1 nW Hz-1/2) light-detection in the terahertz (THz) frequency range (0.1-10 THz) and at room-temperature is key for applications such as time-resolved THz spectroscopy of gases, complex molecules and cold samples, imaging, metrology, ultra-high-speed data communications, coherent control of quantum systems, quantum optics and for capturing snapshots of ultrafast dynamics, in materials and devices, at the nanoscale. Here, we report room-temperature THz nano-receivers exploiting antenna-coupled graphene field effect transistors integrated with lithographically-patterned high-bandwidth (~100 GHz) chips, operating with a combination of high speed (hundreds ps response time) and high sensitivity (noise equivalent power <=120 pW Hz-1/2) at 3.4 THz. Remarkably, this is achieved with various antenna and transistor architectures (single-gate, dual-gate), whose operation frequency can be extended over the whole 0.1-10 THz range, thus paving the way for the design of ultrafast graphene arrays in the far infrared, opening concrete perspective for targeting the aforementioned applications.

Thermoelectric graphene photodetectors with sub-nanosecond response times at terahertz frequencies

Viti L;Vitiello MS
2020

Abstract

Ultrafast and sensitive (noise equivalent power <1 nW Hz-1/2) light-detection in the terahertz (THz) frequency range (0.1-10 THz) and at room-temperature is key for applications such as time-resolved THz spectroscopy of gases, complex molecules and cold samples, imaging, metrology, ultra-high-speed data communications, coherent control of quantum systems, quantum optics and for capturing snapshots of ultrafast dynamics, in materials and devices, at the nanoscale. Here, we report room-temperature THz nano-receivers exploiting antenna-coupled graphene field effect transistors integrated with lithographically-patterned high-bandwidth (~100 GHz) chips, operating with a combination of high speed (hundreds ps response time) and high sensitivity (noise equivalent power <=120 pW Hz-1/2) at 3.4 THz. Remarkably, this is achieved with various antenna and transistor architectures (single-gate, dual-gate), whose operation frequency can be extended over the whole 0.1-10 THz range, thus paving the way for the design of ultrafast graphene arrays in the far infrared, opening concrete perspective for targeting the aforementioned applications.
2020
Istituto Nanoscienze - NANO
---
File in questo prodotto:
File Dimensione Formato  
10.1515_nanoph-2020-0255.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/380258
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact