Single-particle optical spectroscopy methods have enabled quantitative investigations of the optical, electronic, and vibrational responses of nano-objects in the recent years. In this work, single-particle pump-probe optical spectroscopy was exploited to investigate the cooling dynamics of individual gold nanodisks supported on a sapphire substrate. The measured time-resolved signals are shown to directly reflect the temporal evolution of the nanodisk temperature following its sudden excitation. The single-particle character of the experiments enables a quantitative analysis of the amplitudes of the measured time-resolved signals, allowing to rationalize their large probe wavelength dependence. The measured cooling kinetics mainly depends on the nanodisk thickness and to a much lesser extent on the diameter, in agreement with numerical simulations based on Fourier law of heat diffusion, also accounting for the presence of a thermal resistance at the interface between the nanodisks and their substrate. For the explored diameter range (60-190 nm), the nanodisk cooling rate is limited by heat transfer at the gold-sapphire interface, whose thermal conductance can be estimated for each investigated nanodisk.
Ultrafast Thermo-Optical Dynamics of a Single Metal Nano-Object
Rossella F;
2020
Abstract
Single-particle optical spectroscopy methods have enabled quantitative investigations of the optical, electronic, and vibrational responses of nano-objects in the recent years. In this work, single-particle pump-probe optical spectroscopy was exploited to investigate the cooling dynamics of individual gold nanodisks supported on a sapphire substrate. The measured time-resolved signals are shown to directly reflect the temporal evolution of the nanodisk temperature following its sudden excitation. The single-particle character of the experiments enables a quantitative analysis of the amplitudes of the measured time-resolved signals, allowing to rationalize their large probe wavelength dependence. The measured cooling kinetics mainly depends on the nanodisk thickness and to a much lesser extent on the diameter, in agreement with numerical simulations based on Fourier law of heat diffusion, also accounting for the presence of a thermal resistance at the interface between the nanodisks and their substrate. For the explored diameter range (60-190 nm), the nanodisk cooling rate is limited by heat transfer at the gold-sapphire interface, whose thermal conductance can be estimated for each investigated nanodisk.File | Dimensione | Formato | |
---|---|---|---|
rouxel-et-al-2020-ultrafast-thermo-optical-dynamics-of-a-single-metal-nano-object.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.16 MB
Formato
Adobe PDF
|
2.16 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Rouxel_et_al_revised.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Altro tipo di licenza
Dimensione
775.52 kB
Formato
Adobe PDF
|
775.52 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.