On 10 October 2018 an intense storm, characterized by heavy rainfall, hit the Sardinia island, reaching a peak of 452 mm of rain measured in 24 h. Among others, two particularly intense phases were registered between 3 and 6 UTC (Universal Coordinated Time), and between 18 and 24 UTC. The forecast of this case study is challenging because the precipitation was heavy and localized. In particular, the meteorological model used in this paper, provides a good prediction only for the second period over the eastern part of the Sardinia island. In this work, we study the impact of lightning data assimilation and horizontal grid resolution on the Very Short-term Forecast (VSF, 3 and 1 h) for this challenging case, using the RAMS@ISAC meteorological model. The comparison between the 3 h VSF control run and the simulations with lightning data assimilation shows the considerable improvement given by lightning data assimilation, especially for the precipitation that occurred in the eastern part of the island. Reducing the VSF range to 1 h, resulted in higher model performance with a good precipitation prediction over eastern and south-central Sardinia. In addition, the comparison between simulated and observed reflectivity shows an important improvement of simulations with lightning data assimilation compared to the control forecast. However, simulations assimilating lightning overestimated the precipitation in the last part of the day. The increasing of the horizontal resolution to 2 km grid spacing reduces the false alarms and improves the model performance.

Application of Lightning Data Assimilation for the 10 October 2018 Case Study over Sardinia

Rosa Claudia Torcasio;Stefano Federico;Albert Comellas Prat;Stefano Dietrich
2020

Abstract

On 10 October 2018 an intense storm, characterized by heavy rainfall, hit the Sardinia island, reaching a peak of 452 mm of rain measured in 24 h. Among others, two particularly intense phases were registered between 3 and 6 UTC (Universal Coordinated Time), and between 18 and 24 UTC. The forecast of this case study is challenging because the precipitation was heavy and localized. In particular, the meteorological model used in this paper, provides a good prediction only for the second period over the eastern part of the Sardinia island. In this work, we study the impact of lightning data assimilation and horizontal grid resolution on the Very Short-term Forecast (VSF, 3 and 1 h) for this challenging case, using the RAMS@ISAC meteorological model. The comparison between the 3 h VSF control run and the simulations with lightning data assimilation shows the considerable improvement given by lightning data assimilation, especially for the precipitation that occurred in the eastern part of the island. Reducing the VSF range to 1 h, resulted in higher model performance with a good precipitation prediction over eastern and south-central Sardinia. In addition, the comparison between simulated and observed reflectivity shows an important improvement of simulations with lightning data assimilation compared to the control forecast. However, simulations assimilating lightning overestimated the precipitation in the last part of the day. The increasing of the horizontal resolution to 2 km grid spacing reduces the false alarms and improves the model performance.
2020
Istituto di Scienze dell'Atmosfera e del Clima - ISAC - Sede Secondaria Roma
Istituto di Scienze dell'Atmosfera e del Clima - ISAC - Sede Secondaria Lecce
lightning data assimilation
very short-term forecast
numerical weather prediction
RAMS@ISAC
File in questo prodotto:
File Dimensione Formato  
prod_422777-doc_150391.pdf

accesso aperto

Descrizione: atmosphere-11-00541.pdf
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.72 MB
Formato Adobe PDF
3.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/380327
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact