Large area molybdenum disulfide (MoS2) monolayers are typically obtained by using perylene-3,4,9,10-tetracarboxylic acid tetrapotassium salt (PTAS) as organic seeding promoter in chemical vapor deposition (CVD). However, the influence of the seeding promoter and the involvement of the functional groups attached to the seed molecules on the physical properties of the MoS(2)monolayer are rarely taken into account. Here, it is shown that MoS(2)monolayers exhibit remarkable differences in terms of the electronic polarizability by using two representative cases of seeding promoter, namely, the commercial PTAS and a home-made perylene-based molecule,N,N-bis-(5-guanidil-1-pentanoic acid)-perylene-3,4,9,10-tetracarboxylic acid diimide (PTARG). By thermogravimetric analysis, it is verified that the thermal degradation of the promoters occurs differently at the CVD working condition: with a single detachment of the functional groups for PTAS and with multiple thermal events for PTARG. As a consequence, the promoter-dependent electronic polarizability, derived by free charges trapped in the monolayer, impacts on the photoluminescence emission, as well as on the electrical performances of the monolayer channel in back-gated field-effect transistors. These findings suggest that the modification of the electronic polarizability, by varying the molecular promoter in a pre-growth stage, is a path to engineer the MoS(2)opto-electronic properties.

Changing the Electronic Polarizability of Monolayer MoS(2)by Perylene-Based Seeding Promoters

Martella Christian;Kozma Erika;Tummala Pinaka Pani;Bertini Fabio;Scavia Guido;Bollani Monica;Giovanella Umberto;Lamperti Alessio;Molle Alessandro
2020

Abstract

Large area molybdenum disulfide (MoS2) monolayers are typically obtained by using perylene-3,4,9,10-tetracarboxylic acid tetrapotassium salt (PTAS) as organic seeding promoter in chemical vapor deposition (CVD). However, the influence of the seeding promoter and the involvement of the functional groups attached to the seed molecules on the physical properties of the MoS(2)monolayer are rarely taken into account. Here, it is shown that MoS(2)monolayers exhibit remarkable differences in terms of the electronic polarizability by using two representative cases of seeding promoter, namely, the commercial PTAS and a home-made perylene-based molecule,N,N-bis-(5-guanidil-1-pentanoic acid)-perylene-3,4,9,10-tetracarboxylic acid diimide (PTARG). By thermogravimetric analysis, it is verified that the thermal degradation of the promoters occurs differently at the CVD working condition: with a single detachment of the functional groups for PTAS and with multiple thermal events for PTARG. As a consequence, the promoter-dependent electronic polarizability, derived by free charges trapped in the monolayer, impacts on the photoluminescence emission, as well as on the electrical performances of the monolayer channel in back-gated field-effect transistors. These findings suggest that the modification of the electronic polarizability, by varying the molecular promoter in a pre-growth stage, is a path to engineer the MoS(2)opto-electronic properties.
2020
Istituto di fotonica e nanotecnologie - IFN
Istituto per la Microelettronica e Microsistemi - IMM
Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC
electronic polarizability
monolayer MoS2
perylene diimides
seeding promoters
thermogra
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/380617
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact