We present temperature and power dependent photoluminescence measurements on CdSe nanowires synthesized via vapor-phase with and without the use of a metal catalyst. Nanowires produced without a catalyst can be optimized to yield higher quantum efficiency, and narrower and spatially uniform emission, when compared to the catalyst-assisted ones. Emission at energies lower than the band-edge is also found in both cases. By combining spatially-resolved photoluminescence and electron microscopy on the same nanowires, we show that catalyst-free nanowires exhibit a low-energy peak with sharp phonon replica, whereas for catalyst-assisted nanowires low-energy emission is linked to the presence of nanostructures with extended morphological defects.
Photoluminescence of CdSe nanowires grown with and without metal catalyst
Martelli F;
2011
Abstract
We present temperature and power dependent photoluminescence measurements on CdSe nanowires synthesized via vapor-phase with and without the use of a metal catalyst. Nanowires produced without a catalyst can be optimized to yield higher quantum efficiency, and narrower and spatially uniform emission, when compared to the catalyst-assisted ones. Emission at energies lower than the band-edge is also found in both cases. By combining spatially-resolved photoluminescence and electron microscopy on the same nanowires, we show that catalyst-free nanowires exhibit a low-energy peak with sharp phonon replica, whereas for catalyst-assisted nanowires low-energy emission is linked to the presence of nanostructures with extended morphological defects.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


