The paper deals with de la Vallee Poussin type interpolation on the square at tensor product Chebyshev zeros of the first kind. The approximation is studied in the space of locally continuous functions with possible algebraic singularities on the boundary, equipped with weighted uniform norms. In particular, simple necessary and sufficient conditions are proved for the uniform boundedness of the related Lebesgue constants. Error estimates in some Sobolev-type spaces are also given. Pros and cons of such a kind of filtered interpolation are analyzed in comparison with the Lagrange polynomials interpolating at the same Chebyshev grid or at the equal number of Padua nodes. The advantages in reducing the Gibbs phenomenon are shown by means of some numerical experiments. (C) 2020 Elsevier Inc. All rights reserved.

Uniform weighted approximation on the square by polynomial interpolation at Chebyshev nodes

Themistoclakis Woula
2020

Abstract

The paper deals with de la Vallee Poussin type interpolation on the square at tensor product Chebyshev zeros of the first kind. The approximation is studied in the space of locally continuous functions with possible algebraic singularities on the boundary, equipped with weighted uniform norms. In particular, simple necessary and sufficient conditions are proved for the uniform boundedness of the related Lebesgue constants. Error estimates in some Sobolev-type spaces are also given. Pros and cons of such a kind of filtered interpolation are analyzed in comparison with the Lagrange polynomials interpolating at the same Chebyshev grid or at the equal number of Padua nodes. The advantages in reducing the Gibbs phenomenon are shown by means of some numerical experiments. (C) 2020 Elsevier Inc. All rights reserved.
2020
Istituto Applicazioni del Calcolo ''Mauro Picone''
Multivariate polynomial interpolation
Filtered approximation
Lebesgue constants
Chebyshev polynomials
Gibbs phenomenon
File in questo prodotto:
File Dimensione Formato  
2020_AMC_VP_Cheb1_Square.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/380768
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
social impact