The recent discovery of materials featuring strong Rashba spin-orbit coupling (RSOC) and strong electronic correlation raises questions about the interplay of Mott and Rashba physics. In this work, we employ cluster perturbation theory to investigate the spectral properties of the two-dimensional Hubbard model in the presence of a significant or large RSOC. We show that RSOC strongly favors metallic phases and competes with Mott localization, leading to an unconventional scenario for the Mott transition, which is no longer controlled by the ratio between the Hubbard U and an effective bandwidth. The results show a strong sensitivity to the value of the RSOC.
Rashba-metal to Mott-insulator transition
Brosco V.;Capone M.
2020
Abstract
The recent discovery of materials featuring strong Rashba spin-orbit coupling (RSOC) and strong electronic correlation raises questions about the interplay of Mott and Rashba physics. In this work, we employ cluster perturbation theory to investigate the spectral properties of the two-dimensional Hubbard model in the presence of a significant or large RSOC. We show that RSOC strongly favors metallic phases and competes with Mott localization, leading to an unconventional scenario for the Mott transition, which is no longer controlled by the ratio between the Hubbard U and an effective bandwidth. The results show a strong sensitivity to the value of the RSOC.File | Dimensione | Formato | |
---|---|---|---|
prod_434253-doc_162213.pdf
solo utenti autorizzati
Descrizione: Rashba-metal to Mott-insulator transition
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.72 MB
Formato
Adobe PDF
|
1.72 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.