Ageing effects on spatial navigation are characterized mainly in terms of impaired allocentric strategies. However, an alternative hypothesis is that navigation difficulties in aged people are associated with deficits in processing and encoding spatial cues. We tested this hypothesis by studying how geometry and landmark cues control navigation in young and older adults in a real, ecological environment. Recordings of body and gaze dynamics revealed a preference for geometry-based navigation in older adults, and for landmark-based navigation in younger ones. While cue processing was associated with specific fixation patterns, advanced age manifested itself in a longer reorientation time, reflecting an unbalanced exploration-exploitation trade-off in scanning policies. Moreover, a battery of tests revealed a specific cognitive deficit in older adults with geometric preference. These results suggest that allocentric strategy deficits in ageing can result from difficulties related to landmark coding, and predict recovery of allocentric strategies in geometrically polarized environments. Using a real-world navigation task, Becu et al. find a preference for geometry-based navigation in older adults, and for landmark-based navigation in younger people. Older adults also show a decreased capacity to take perspective from landmarks.
Age-related preference for geometric spatial cues during real-world navigation
Bologna Luca Leonardo;
2020
Abstract
Ageing effects on spatial navigation are characterized mainly in terms of impaired allocentric strategies. However, an alternative hypothesis is that navigation difficulties in aged people are associated with deficits in processing and encoding spatial cues. We tested this hypothesis by studying how geometry and landmark cues control navigation in young and older adults in a real, ecological environment. Recordings of body and gaze dynamics revealed a preference for geometry-based navigation in older adults, and for landmark-based navigation in younger ones. While cue processing was associated with specific fixation patterns, advanced age manifested itself in a longer reorientation time, reflecting an unbalanced exploration-exploitation trade-off in scanning policies. Moreover, a battery of tests revealed a specific cognitive deficit in older adults with geometric preference. These results suggest that allocentric strategy deficits in ageing can result from difficulties related to landmark coding, and predict recovery of allocentric strategies in geometrically polarized environments. Using a real-world navigation task, Becu et al. find a preference for geometry-based navigation in older adults, and for landmark-based navigation in younger people. Older adults also show a decreased capacity to take perspective from landmarks.File | Dimensione | Formato | |
---|---|---|---|
2020_Becu_et_al.pdf
accesso aperto
Descrizione: Age-related preference for geometric spatial cues during real-world navigation
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.94 MB
Formato
Adobe PDF
|
1.94 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.