Recently, the field of optical frequency combs experienced a major development of new sources. They are generally much smaller in size (on the scale of millimetres) and can extend frequency comb emission to other spectral regions, in particular towards the mid- and far-infrared regions. Unlike classical pulsed frequency combs, their mode-locking mechanism relies on four-wave-mixing nonlinear processes, yielding a non-trivial phase relation among the modes and an uncommon emission time profile. Here, by combining dual-comb multi-heterodyne detection with Fourier-transform analysis, we show how to simultaneously acquire and monitor over a wide range of timescales the phase pattern of a generic (unknown) frequency comb. The technique is applied to characterize both a mid-infrared and a terahertz quantum cascade laser frequency comb, conclusively proving the high degree of coherence and the remarkable long-term stability of these sources. Moreover, the technique allows also the reconstruction of the electric field, intensity profile and instantaneous frequency of the emission.

Retrieval of phase relation and emission profile of quantum cascade laser frequency combs

Cappelli, Francesco;Consolino, Luigi;Campo, Giulio;Galli, Iacopo;Mazzotti, Davide;Campa, Annamaria;Siciliani de Cumis, Mario;Cancio Pastor, Pablo;Eramo, Roberto;De Natale, Paolo;Bartalini, Saverio
2019

Abstract

Recently, the field of optical frequency combs experienced a major development of new sources. They are generally much smaller in size (on the scale of millimetres) and can extend frequency comb emission to other spectral regions, in particular towards the mid- and far-infrared regions. Unlike classical pulsed frequency combs, their mode-locking mechanism relies on four-wave-mixing nonlinear processes, yielding a non-trivial phase relation among the modes and an uncommon emission time profile. Here, by combining dual-comb multi-heterodyne detection with Fourier-transform analysis, we show how to simultaneously acquire and monitor over a wide range of timescales the phase pattern of a generic (unknown) frequency comb. The technique is applied to characterize both a mid-infrared and a terahertz quantum cascade laser frequency comb, conclusively proving the high degree of coherence and the remarkable long-term stability of these sources. Moreover, the technique allows also the reconstruction of the electric field, intensity profile and instantaneous frequency of the emission.
2019
Istituto Nazionale di Ottica - INO
pulses; coherence; precision
File in questo prodotto:
File Dimensione Formato  
prod_424013-doc_174074.pdf

solo utenti autorizzati

Descrizione: Retrieval of phase relation and emission profile of quantum cascade laser frequency combs
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.15 MB
Formato Adobe PDF
2.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/380872
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 96
  • ???jsp.display-item.citation.isi??? ND
social impact