Biodiesel has been identified as one of the notable options for at least complementing conventional fuels. From a transesterification reaction, crude glycerol is produced as the main by-product. Given the difficultly in upgrading to high-grade glycerin and glycerol market saturation, alternative routes to more value-added products have aroused significant interest. In this work, we proposed supported vanadyl orthophosphates (VOP) as catalysts for the glycerol dehydration to acrolein. VOP supported on Y-AI2O3, TiC^, and ZrC>2 were prepared, characterized by inductively coupled plasma mass spectrometry (ICP-MS), X-ray diffraction (XRD), N2 physisorption and temperature-programmed desorption of ammonia (NH3-TPD), and tested under different operating conditions. All the samples showed low coke formation in the presence of molecular oxygen in the feed. Acrolein is the main condensable product, with carbon balance being satisfactory under most operating conditions. VOP supported onto alumina provided the best catalytic performance, due to a good balance between the acid (weak and medium acid sites) and redox sites, thereby appearing as a good candidate for glycerol dehydration to acrolein.

Glycerol dehydration to acrolein over supported vanadyl orthophosphates catalysts

Ruoppolo G;Landi G;
2020

Abstract

Biodiesel has been identified as one of the notable options for at least complementing conventional fuels. From a transesterification reaction, crude glycerol is produced as the main by-product. Given the difficultly in upgrading to high-grade glycerin and glycerol market saturation, alternative routes to more value-added products have aroused significant interest. In this work, we proposed supported vanadyl orthophosphates (VOP) as catalysts for the glycerol dehydration to acrolein. VOP supported on Y-AI2O3, TiC^, and ZrC>2 were prepared, characterized by inductively coupled plasma mass spectrometry (ICP-MS), X-ray diffraction (XRD), N2 physisorption and temperature-programmed desorption of ammonia (NH3-TPD), and tested under different operating conditions. All the samples showed low coke formation in the presence of molecular oxygen in the feed. Acrolein is the main condensable product, with carbon balance being satisfactory under most operating conditions. VOP supported onto alumina provided the best catalytic performance, due to a good balance between the acid (weak and medium acid sites) and redox sites, thereby appearing as a good candidate for glycerol dehydration to acrolein.
2020
Istituto di Ricerche sulla Combustione - IRC - Sede Napoli
glycerol
acrolein
vanadyl orthophosphate
alumina
titania
zirconia
biodiesel
File in questo prodotto:
File Dimensione Formato  
Ruoppolo, Landi, Di Benedetto - 2020 - Glycerol Dehydration to Acrolein over Supported Vanadyl Orthophosphates Catalysts.pdf

accesso aperto

Descrizione: reprint
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.74 MB
Formato Adobe PDF
4.74 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/381113
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact