In recent years the development of Single-Photon Avalanche Diodes (SPADs) had a big impact on single-photon counting applications requiring high-performance detectors in terms of Dark Count Rate (DCR), Photon Detection Efficiency (PDE), afterpulsing probability, etc. Among these, it is possible to find applications in single-molecule fluorescence spectroscopy that suffer from long-time measurements. In these cases SPAD arrays can be a solution in order to shorten the measurement time, thanks to the high grade of parallelism they can provide. Moreover, applications in other fields (e.g. astronomy) demand for large-area single-photon detectors, able also to handle very high count rates. For these reasons we developed a new single-photon detection module, featuring an 8x8 SPAD array. Thanks to a dedicated silicon technology, the performance of the detector have been finely optimized, reaching a 49% detection efficiency at 550 nm, as well as low dark counts (2 kcount/s maximum all over the array). This module can be used in two different modes: the first is a multi-spot configuration, allowing the acquisition of 64 optical signals at the same time and considerably reducing the time needed for a measurement. The second operation mode instead exploits all the pixels in a combined mode, allowing the detection of a 64-times higher maximum photon rate (up to 2 Gcount/s). In addition, this configuration provides also an extended dynamic range and allows to attain photon number resolving capabilities.

Development and characterization of an 8x8 SPAD-array module for gigacount per second applications

Ceccarelli Francesco;
2017

Abstract

In recent years the development of Single-Photon Avalanche Diodes (SPADs) had a big impact on single-photon counting applications requiring high-performance detectors in terms of Dark Count Rate (DCR), Photon Detection Efficiency (PDE), afterpulsing probability, etc. Among these, it is possible to find applications in single-molecule fluorescence spectroscopy that suffer from long-time measurements. In these cases SPAD arrays can be a solution in order to shorten the measurement time, thanks to the high grade of parallelism they can provide. Moreover, applications in other fields (e.g. astronomy) demand for large-area single-photon detectors, able also to handle very high count rates. For these reasons we developed a new single-photon detection module, featuring an 8x8 SPAD array. Thanks to a dedicated silicon technology, the performance of the detector have been finely optimized, reaching a 49% detection efficiency at 550 nm, as well as low dark counts (2 kcount/s maximum all over the array). This module can be used in two different modes: the first is a multi-spot configuration, allowing the acquisition of 64 optical signals at the same time and considerably reducing the time needed for a measurement. The second operation mode instead exploits all the pixels in a combined mode, allowing the detection of a 64-times higher maximum photon rate (up to 2 Gcount/s). In addition, this configuration provides also an extended dynamic range and allows to attain photon number resolving capabilities.
2017
Istituto di fotonica e nanotecnologie - IFN
Array detectors
Single-Photon A valanche Diodes (SPADs)
photon counting
photon number resolving
gigacount rate
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/381182
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 4
social impact