The demand for key metals for the production of high-tech products is constantly growing in Europe, leading to relevant problems both in terms of supply risks and costs. Waste from Electric and Electronic Equipment (WEEE) is growing very fast in Europe, with an annual increase rate between 3 and 5%. Printed Circuit Boards (PCBs), which are embedded in electric and electronics products, are very valuable waste products, since they are composed also of precious metals and key metals (about 25-30%). Recycling of PCBs is a very challenging task that has not been solved yet: recycling rates for traditional metals are around 30-35% and many critical key metals, as well as the non metal fraction, are not recycled. This work proposes a set of solutions to be adopted towards the automated zero-waste treatment of PCBs. They address selective disassembly of PCBs components, mechanical pre-treatments, chemical processes for the characterisation of metals material content of PCBs, as well as for the recycling of their non-metal fraction. New business models are finally proposed for the uptake of such solutions in a framework of integrated recycling chain.
Integrated Technological Solutions for Zero Waste Recycling of Printed Circuit Boards (PCBs)
Giacomo Copani;Marcello Colledani;Alessandro Brusaferri;Antonio Pievatolo;Eugenio Amendola;Maurizio Avella;Monica Fabrizio
2019
Abstract
The demand for key metals for the production of high-tech products is constantly growing in Europe, leading to relevant problems both in terms of supply risks and costs. Waste from Electric and Electronic Equipment (WEEE) is growing very fast in Europe, with an annual increase rate between 3 and 5%. Printed Circuit Boards (PCBs), which are embedded in electric and electronics products, are very valuable waste products, since they are composed also of precious metals and key metals (about 25-30%). Recycling of PCBs is a very challenging task that has not been solved yet: recycling rates for traditional metals are around 30-35% and many critical key metals, as well as the non metal fraction, are not recycled. This work proposes a set of solutions to be adopted towards the automated zero-waste treatment of PCBs. They address selective disassembly of PCBs components, mechanical pre-treatments, chemical processes for the characterisation of metals material content of PCBs, as well as for the recycling of their non-metal fraction. New business models are finally proposed for the uptake of such solutions in a framework of integrated recycling chain.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.