Light-sensitive azobenzene compounds can be engineered to stably partition into the plasma membrane, thus causing its thinning in the dark and relaxation upon light stimulation. In neurons, the resulting light-dependent change in membrane capacitance induces a transient hyperpolarization followed by rebound depolarization and action potential firing. Optical technologies allowing modulation of neuronal activity at high spatio-temporal resolution are becoming paramount in neuroscience. In this respect, azobenzene-based photoswitches are promising nanoscale tools for neuronal photostimulation. Here we engineered a light-sensitive azobenzene compound (Ziapin2) that stably partitions into the plasma membrane and causes its thinning through trans-dimerization in the dark, resulting in an increased membrane capacitance at steady state. We demonstrated that in neurons loaded with the compound, millisecond pulses of visible light induce a transient hyperpolarization followed by a delayed depolarization that triggers action potential firing. These effects are persistent and can be evoked in vivo up to 7 days, proving the potential of Ziapin2 for the modulation of membrane capacitance in the millisecond timescale, without directly affecting ion channels or local temperature.

Neuronal firing modulation by a membrane-targeted photoswitch

Dalla Serra Mauro;Lunelli Lorenzo;Marchioretto Marta;
2020

Abstract

Light-sensitive azobenzene compounds can be engineered to stably partition into the plasma membrane, thus causing its thinning in the dark and relaxation upon light stimulation. In neurons, the resulting light-dependent change in membrane capacitance induces a transient hyperpolarization followed by rebound depolarization and action potential firing. Optical technologies allowing modulation of neuronal activity at high spatio-temporal resolution are becoming paramount in neuroscience. In this respect, azobenzene-based photoswitches are promising nanoscale tools for neuronal photostimulation. Here we engineered a light-sensitive azobenzene compound (Ziapin2) that stably partitions into the plasma membrane and causes its thinning through trans-dimerization in the dark, resulting in an increased membrane capacitance at steady state. We demonstrated that in neurons loaded with the compound, millisecond pulses of visible light induce a transient hyperpolarization followed by a delayed depolarization that triggers action potential firing. These effects are persistent and can be evoked in vivo up to 7 days, proving the potential of Ziapin2 for the modulation of membrane capacitance in the millisecond timescale, without directly affecting ion channels or local temperature.
2020
Istituto di Biofisica - IBF
PHOTOELECTRIC RESPONSE
LIGHT SENSITIVITY
ION CHANNELS
PHOTOISOMERIZATION
CAPACITANCE
INTERFACE
CELLS
MODEL
RAFT
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/381304
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact