In this study, the anammox process was applied for the first time to the treatment of ammonium-rich liquid residues produced by the two-stage anaerobic digestion of food waste (2sAD-FW); such residues may represent a significant environmental issue if not properly managed. A granular anammox reactor was fed with a progressively increasing share of partially nitritated 2sAD-FW wastewater. An alternative operating strategy based on partial by-pass of the partial nitritation unit was tested, in order to regulate the influent NO/NH molar ratio without chemical addition. High nitrogen removal efficiency (89 ± 1%) and negligible nitrite discharge rates were achieved, together with high nitrogen removal rate/nitrogen loading rate (NRR/NLR, 97 ± 1%) and stable specific anammox activity (0.42 ± 0.03 gN-N/gVSS d). The observed NH/NO/NO molar ratio was in agreement with anammox stoichiometry, as confirmed by the low contribution (<5%) of denitrification to nitrogen removal. Moreover, the possibility of using digital color characterization of granular biomass as a novel, simple tool for the monitoring of anammox biomass enrichment and process performance was investigated under dynamic conditions, using real wastewater: changes in granule color correlated well with the increasing share of 2sAD-FW wastewater in the influent (R = 83%), as well as with the decrease of anammox biomass abundance in the reactor (R = 68%). The results suggest that anammox may be successfully integrated into a 2sAD-FW system, thus enhancing its environmental sustainability.

Application of anammox within an integrated approach to sustainable food waste management and valorization

Carucci A
;
Bortolussi A;Cappai G;Milia S
Ultimo
2020

Abstract

In this study, the anammox process was applied for the first time to the treatment of ammonium-rich liquid residues produced by the two-stage anaerobic digestion of food waste (2sAD-FW); such residues may represent a significant environmental issue if not properly managed. A granular anammox reactor was fed with a progressively increasing share of partially nitritated 2sAD-FW wastewater. An alternative operating strategy based on partial by-pass of the partial nitritation unit was tested, in order to regulate the influent NO/NH molar ratio without chemical addition. High nitrogen removal efficiency (89 ± 1%) and negligible nitrite discharge rates were achieved, together with high nitrogen removal rate/nitrogen loading rate (NRR/NLR, 97 ± 1%) and stable specific anammox activity (0.42 ± 0.03 gN-N/gVSS d). The observed NH/NO/NO molar ratio was in agreement with anammox stoichiometry, as confirmed by the low contribution (<5%) of denitrification to nitrogen removal. Moreover, the possibility of using digital color characterization of granular biomass as a novel, simple tool for the monitoring of anammox biomass enrichment and process performance was investigated under dynamic conditions, using real wastewater: changes in granule color correlated well with the increasing share of 2sAD-FW wastewater in the influent (R = 83%), as well as with the decrease of anammox biomass abundance in the reactor (R = 68%). The results suggest that anammox may be successfully integrated into a 2sAD-FW system, thus enhancing its environmental sustainability.
2020
Istituto di Geologia Ambientale e Geoingegneria - IGAG
Ammonium
Anaerobic digestion
Anammox
CIE-Lab
Food waste
Sequencing batch reactor
File in questo prodotto:
File Dimensione Formato  
2020_anammox_VoR.pdf

solo utenti autorizzati

Descrizione: Full manuscript_VoR
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.71 MB
Formato Adobe PDF
1.71 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2020_Carucci et al_anammox_post print w cover.pdf

accesso aperto

Descrizione: manuscript post print
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 2.23 MB
Formato Adobe PDF
2.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/381327
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact