Brain connectivity at the single neuron level can provide fundamental insights into how information is integrated and propagated within and between brain regions. However, it is almost impossible to adequately study this problem experimentally and, despite intense efforts in the field, no mathematical description has been obtained so far. Here, we present a mathematical framework based on a graph-theoretical approach that, starting from experimental data obtained from a few small subsets of neurons, can quantitatively explain and predict the corresponding full network properties. This model also changes the paradigm with which large-scale model networks can be built, from using probabilistic/empiric connections or limited data, to a process that can algorithmically generate neuronal networks connected as in the real system. (C) 2020 The Author(s). Published by Elsevier Inc.
Graph-theoretical derivation of brain structural connectivity
Giacopelli G;Migliore M;Tegolo;
2020
Abstract
Brain connectivity at the single neuron level can provide fundamental insights into how information is integrated and propagated within and between brain regions. However, it is almost impossible to adequately study this problem experimentally and, despite intense efforts in the field, no mathematical description has been obtained so far. Here, we present a mathematical framework based on a graph-theoretical approach that, starting from experimental data obtained from a few small subsets of neurons, can quantitatively explain and predict the corresponding full network properties. This model also changes the paradigm with which large-scale model networks can be built, from using probabilistic/empiric connections or limited data, to a process that can algorithmically generate neuronal networks connected as in the real system. (C) 2020 The Author(s). Published by Elsevier Inc.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.