The [1]benzothieno[3,2-b][1]benzothiophene (BTBT) planar system was used to functionalize the phthalocyanine ring aiming at synthesizing novel electron-rich π-conjugated macrocycles. The resulting ZnPc-BTBT and ZnPc-(BTBT)₄ derivatives are the first two examples of a phthalocyanine subclass having potential use as solution-processable p-type organic semiconductors. In particular, the combination of experimental characterizations and theoretical calculations suggests compatible energy level alignments with mixed halide hybrid perovskite-based devices. Furthermore, ZnPc-(BTBT)₄ features a high aggregation tendency, a useful tool to design compact molecular films. When tested as hole transport materials in perovskite solar cells under 100 mA cm‾² standard AM 1.5G solar illumination, ZnPc-(BTBT)₄ gave power conversion efficiencies as high as 14.13%, irrespective of the doping process generally required to achieve high photovoltaic performances. This work is a first step toward a new phthalocyanine core engineerization to obtain robust, yet more efficient and cost-effective materials for organic electronics and optoelectronics.

[1]Benzothieno[3,2-b][1]benzothiophene-Phthalocyanine derivatives: a subclass of solution-processable electron-rich hole transport materials

Gloria Zanotti
Primo
;
Nicola Angelini;Giuseppe Mattioli;Anna Maria Paoletti;Giovanna Pennesi;Daniela Caschera;Anatoly Petrovich Sobolev;Aldo Di Carlo;
2020

Abstract

The [1]benzothieno[3,2-b][1]benzothiophene (BTBT) planar system was used to functionalize the phthalocyanine ring aiming at synthesizing novel electron-rich π-conjugated macrocycles. The resulting ZnPc-BTBT and ZnPc-(BTBT)₄ derivatives are the first two examples of a phthalocyanine subclass having potential use as solution-processable p-type organic semiconductors. In particular, the combination of experimental characterizations and theoretical calculations suggests compatible energy level alignments with mixed halide hybrid perovskite-based devices. Furthermore, ZnPc-(BTBT)₄ features a high aggregation tendency, a useful tool to design compact molecular films. When tested as hole transport materials in perovskite solar cells under 100 mA cm‾² standard AM 1.5G solar illumination, ZnPc-(BTBT)₄ gave power conversion efficiencies as high as 14.13%, irrespective of the doping process generally required to achieve high photovoltaic performances. This work is a first step toward a new phthalocyanine core engineerization to obtain robust, yet more efficient and cost-effective materials for organic electronics and optoelectronics.
2020
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
Istituto di Struttura della Materia - ISM - Sede Secondaria Montelibretti
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
Istituto per i Sistemi Biologici - ISB (ex IMC)
hole transport
organic electronics
perovskite solar cells
photovoltaic devices
phthalocyanines
File in questo prodotto:
File Dimensione Formato  
2020_ChemPlusChem_cover feature.pdf

accesso aperto

Descrizione: Cover versione editoriale
Tipologia: Altro materiale allegato
Licenza: Altro tipo di licenza
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF Visualizza/Apri
ChemPlusChem - 2020 - Zanotti - 1 Benzothieno 3 2‐b 1 benzothiophene‐Phthalocyanine Derivatives A Subclass of.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.02 MB
Formato Adobe PDF
3.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/381415
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 19
social impact