The [1]benzothieno[3,2-b][1]benzothiophene (BTBT) planar system was used to functionalize the phthalocyanine ring aiming at synthesizing novel electron-rich ?-conjugated macrocycles. The resulting ZnPc-BTBT and ZnPc-(BTBT)4 derivatives are the first two examples of a phthalocyanine subclass having potential use as solution-processable p-type organic semiconductors. In particular, the combination of experimental characterizations and theoretical calculations suggests compatible energy level alignments with mixed halide hybrid perovskite-based devices. Furthermore, ZnPc-(BTBT)4 features a high aggregation tendency, a useful tool to design compact molecular films. When tested as hole transport materials in perovskite solar cells under 100 mAcm-2 standard AM 1.5G solar illumination, ZnPc-(BTBT)4 gave power conversion efficiencies as high as 14.13%, irrespective of the doping process generally required to achieve high photovoltaic performances. This work is a first step toward a new phthalocyanine core engineerization to obtain robust, yet more efficient and cost-effective materials for organic electronics and optoelectronics.

[1]Benzothieno[3,2-b][1]benzothiophene-Phthalocyanine Derivatives: A Subclass of Solution-Processable Electron-Rich Hole Transport Materials

Gloria Zanotti;Nicola Angelini;Giuseppe Mattioli;Anna Maria Paoletti;Giovanna Pennesi;Daniela Caschera;Aldo Di Carlo;
2020

Abstract

The [1]benzothieno[3,2-b][1]benzothiophene (BTBT) planar system was used to functionalize the phthalocyanine ring aiming at synthesizing novel electron-rich ?-conjugated macrocycles. The resulting ZnPc-BTBT and ZnPc-(BTBT)4 derivatives are the first two examples of a phthalocyanine subclass having potential use as solution-processable p-type organic semiconductors. In particular, the combination of experimental characterizations and theoretical calculations suggests compatible energy level alignments with mixed halide hybrid perovskite-based devices. Furthermore, ZnPc-(BTBT)4 features a high aggregation tendency, a useful tool to design compact molecular films. When tested as hole transport materials in perovskite solar cells under 100 mAcm-2 standard AM 1.5G solar illumination, ZnPc-(BTBT)4 gave power conversion efficiencies as high as 14.13%, irrespective of the doping process generally required to achieve high photovoltaic performances. This work is a first step toward a new phthalocyanine core engineerization to obtain robust, yet more efficient and cost-effective materials for organic electronics and optoelectronics.
2020
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
hole transport
organic electronics
perovskite solar cells
photovoltaic devices
phthalocyanines
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/381415
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? ND
social impact