X-ray analytical techniques are increasingly being used to study manuscripts and works of art on paper, whether with laboratory equipment or synchrotron sources. However, it is difficult to anticipate the impact of X-ray photons on paper- and cellulose-based artifacts, particularly due to the large variety of their constituents and degradation levels, and the subsequent material multiscale heterogeneity. In this context, this work aims at developing an analytical approach to study the modifications in paper upon synchrotron radiation (SR) X-ray radiation using analytical techniques, which are fully complementary and highly sensitive, yet not frequently used together. At the molecular scale, cellulose chain scissions and hydroxyl free radicals were measured using chromatographic separation techniques (size-exclusion chromatography-multiangle laser light scattering-differential refractive index (SEC-MALS-DRI) and reversed-phase high-performance liquid chromatography-fluorescence detector-diode array detector (RP-HPLC-FLD-DAD)), while the optical properties of paper were characterized using spectroscopy (UV luminescence and diffuse reflectance). These techniques showed different sensitivities toward the detection of changes. The modifications in the cellulosic material were monitored in real time, within a few days, and up to 2 years following the irradiation to define a lowest observed adverse effect dose (LOAED). As paper is a hygroscopic material, the impact of the humidity in the environment was studied using this approach. Three levels of moisture content in the paper, achieved by conditioning the samples and irradiating them at different relative humidities (RHs), were studied (0, 50, 80% RH). It was shown that very low moisture content accelerated molecular and optical modifications.

Short- and Long-Term Effects of X-ray Synchrotron Radiation on Cotton Paper

Missori M;
2020

Abstract

X-ray analytical techniques are increasingly being used to study manuscripts and works of art on paper, whether with laboratory equipment or synchrotron sources. However, it is difficult to anticipate the impact of X-ray photons on paper- and cellulose-based artifacts, particularly due to the large variety of their constituents and degradation levels, and the subsequent material multiscale heterogeneity. In this context, this work aims at developing an analytical approach to study the modifications in paper upon synchrotron radiation (SR) X-ray radiation using analytical techniques, which are fully complementary and highly sensitive, yet not frequently used together. At the molecular scale, cellulose chain scissions and hydroxyl free radicals were measured using chromatographic separation techniques (size-exclusion chromatography-multiangle laser light scattering-differential refractive index (SEC-MALS-DRI) and reversed-phase high-performance liquid chromatography-fluorescence detector-diode array detector (RP-HPLC-FLD-DAD)), while the optical properties of paper were characterized using spectroscopy (UV luminescence and diffuse reflectance). These techniques showed different sensitivities toward the detection of changes. The modifications in the cellulosic material were monitored in real time, within a few days, and up to 2 years following the irradiation to define a lowest observed adverse effect dose (LOAED). As paper is a hygroscopic material, the impact of the humidity in the environment was studied using this approach. Three levels of moisture content in the paper, achieved by conditioning the samples and irradiating them at different relative humidities (RHs), were studied (0, 50, 80% RH). It was shown that very low moisture content accelerated molecular and optical modifications.
2020
Istituto dei Sistemi Complessi - ISC
OXIDATIVE-DEGRADATION; CELLULOSE DEGRADATION; RESIDUAL CHROMOPHORES; PHYSICAL-PROPERTIES; GAMMA-IRRADIATION; FLUORESCENCE; SPECTROSCOPY; WATER; IDENTIFICATION; MITIGATION
File in questo prodotto:
File Dimensione Formato  
prod_426019-doc_162152.pdf

solo utenti autorizzati

Descrizione: Short- and Long-Term Effects of X-ray Synchrotron Radiation on Cotton Paper
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.6 MB
Formato Adobe PDF
4.6 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/381542
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact