Microcalorimetry was applied to assess and compare the toxic effect of heavy metals, such as As, Cu, Cd, Cr, Co, Pb and Zn, on the soil microbial activities and community. About 1.0 g soil spiked 5.0 mg glucose and 5.0 mg ammonium sulfate, the microbial activities were recorded as power-time curves, and their indices, microbial growth rate constant k, total heat evolution Q(T), metabolic enthalpy Delta H(met) and mass specific heat rate J(Q/S), were calculated. Comparing these thermodynamic parameters associated with growth yield, a general order of toxicity to the soil was found to be Cr > Pb > As > Co > Zn > Cd > Cu. When soil was exposed to heavy metals, the amount of bacteria and fungi decreased with the incubation time, and the bacterial number diminished sharply. It illustrates that fungi are more tolerant, and bacteria-fungi ratio would be altered under metal stress. To determine the status of the glucose consumed, a glucose biosensor with eggshell membrane was used to measure the remaining glucose in soil sample. Results showed that the time at which glucose was consumed completely was agreed with the microcalorimetric time to a large extent, and depended on the toxicity of heavy metals as well. (C) 2009 Elsevier B.V. All rights reserved.

Short-time effect of heavy metals upon microbial community activity

Emilia Bramanti
2010

Abstract

Microcalorimetry was applied to assess and compare the toxic effect of heavy metals, such as As, Cu, Cd, Cr, Co, Pb and Zn, on the soil microbial activities and community. About 1.0 g soil spiked 5.0 mg glucose and 5.0 mg ammonium sulfate, the microbial activities were recorded as power-time curves, and their indices, microbial growth rate constant k, total heat evolution Q(T), metabolic enthalpy Delta H(met) and mass specific heat rate J(Q/S), were calculated. Comparing these thermodynamic parameters associated with growth yield, a general order of toxicity to the soil was found to be Cr > Pb > As > Co > Zn > Cd > Cu. When soil was exposed to heavy metals, the amount of bacteria and fungi decreased with the incubation time, and the bacterial number diminished sharply. It illustrates that fungi are more tolerant, and bacteria-fungi ratio would be altered under metal stress. To determine the status of the glucose consumed, a glucose biosensor with eggshell membrane was used to measure the remaining glucose in soil sample. Results showed that the time at which glucose was consumed completely was agreed with the microcalorimetric time to a large extent, and depended on the toxicity of heavy metals as well. (C) 2009 Elsevier B.V. All rights reserved.
2010
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Istituto per i Processi Chimico-Fisici - IPCF
Microcalorimetry; Glucose biosensor; Heavy metal; Microbial activity; Toxic effect
File in questo prodotto:
File Dimensione Formato  
prod_40375-doc_1148.pdf

solo utenti autorizzati

Descrizione: Short-time effect of heavy metals upon microbial community activity
Dimensione 693.86 kB
Formato Adobe PDF
693.86 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/38173
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 162
  • ???jsp.display-item.citation.isi??? 135
social impact