In this study, Al2O3/alucone nanolayered composites were studied as the overcoating for Ag nanowire electrodes with the aim of improving their mechanical reliability. Ultrathin and conformal Al2O3/alucone nanolayered composites with different layer spacings were formed on Ag nanowire electrodes via molecular layer deposition. To evaluate the effect of the different nanolayered composite overcoatings with the different layer spacing on the mechanical reliability of Ag nanowire electrodes, bending fatigue tests were performed on the specimens for up to 300,000 cycles while monitoring their resistance in situ. Ag nanowire electrodes with the nanolayered composite overcoating exhibited considerably smaller increases in resistance under bending fatigue, as compared to those with a single Al2O3 layer. In the nanolayered composites, the increase in resistance was further reduced as the layer spacing was decreased. Microstructural analysis confirmed that the density of propagated cracks in the overcoating layers was lower in the nanolayered composites compared to the single Al2O3 layer, resulting in a smaller increase in the resistance of the nanolayered composites. A finite-element method simulation of the bending of a single Al2O3 layer and nanolayered composites, which were designed to match the characteristics of our experimentally tested samples, indicated stress relaxation at the interfaces of the alucone layer, which strengthens the mechanical reliability of the nanolayered composites. (C) 2020 Elsevier B.V. All rights reserved.
Effect of Al2O3/Alucone nanolayered composite overcoating on reliability of Ag nanowire electrodes under bending fatigue
Matteini Paolo;
2020
Abstract
In this study, Al2O3/alucone nanolayered composites were studied as the overcoating for Ag nanowire electrodes with the aim of improving their mechanical reliability. Ultrathin and conformal Al2O3/alucone nanolayered composites with different layer spacings were formed on Ag nanowire electrodes via molecular layer deposition. To evaluate the effect of the different nanolayered composite overcoatings with the different layer spacing on the mechanical reliability of Ag nanowire electrodes, bending fatigue tests were performed on the specimens for up to 300,000 cycles while monitoring their resistance in situ. Ag nanowire electrodes with the nanolayered composite overcoating exhibited considerably smaller increases in resistance under bending fatigue, as compared to those with a single Al2O3 layer. In the nanolayered composites, the increase in resistance was further reduced as the layer spacing was decreased. Microstructural analysis confirmed that the density of propagated cracks in the overcoating layers was lower in the nanolayered composites compared to the single Al2O3 layer, resulting in a smaller increase in the resistance of the nanolayered composites. A finite-element method simulation of the bending of a single Al2O3 layer and nanolayered composites, which were designed to match the characteristics of our experimentally tested samples, indicated stress relaxation at the interfaces of the alucone layer, which strengthens the mechanical reliability of the nanolayered composites. (C) 2020 Elsevier B.V. All rights reserved.| File | Dimensione | Formato | |
|---|---|---|---|
|
021.Effect of Al2O3Alucone nanolayered composite.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.65 MB
Formato
Adobe PDF
|
1.65 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
Matteini20jac_ELSEVIER_OA_POSTPRINT.pdf
accesso aperto
Descrizione: This is the Author Accepted Manuscript (postprint) version of the following paper: Hwang Byungil, Qaiser Nadeem, Lee Changmin, Matteini Paolo, Yoo Seung Jo, Kim Hyoungsub, "Effect of Al2O3/Alucone nanolayered composite overcoating on reliability of Ag nanowire electrodes under bending fatigue", in JOURNAL OF ALLOYS AND COMPOUNDS, vol. 846, 2020, https://dx.doi.org/10.1016/j.jallcom.2020.156420
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


