Poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) are biodegradable aliphatic polyesters, which being semicrystalline and thermoplastic can be processed by conventional methods. Their blends give interesting materials for industrial packaging applications, due to their increased ductility as PBAT content increases. However, like many aliphatic polyesters, the PLA matrix degrades upon melt processing thus affecting the thermo-mechanical features of the blended material. In this work, we studied the effect of processing at high temperature on the molecular weight distribution, morphology, and thermo-mechanical properties of both homopolymers, as well as the PLA/PBAT 75/25 blend. Notably, different processing conditions were adopted in terms of temperature (range 150-200 C) and other relevant processing parameters (moisture removal and nitrogen atmosphere). Analysis of PLA/ PBAT blends indicated that intermolecular chain reactions took place under strong degradative conditions of PLA, yielding PLA/PBAT mixed chains (copolymers). Increasing amounts of copolymers resulted in improved phase dispersion and increased ductility, as SEM and mechanical tests indicated. Conversely, reduced PLA degradation with less copolymer formation, afforded higher modulus materials, owing to poorer dispersion of the soft phase (PBAT) into the PLA matrix.

Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing

Signori F;Bronco S
2009

Abstract

Poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) are biodegradable aliphatic polyesters, which being semicrystalline and thermoplastic can be processed by conventional methods. Their blends give interesting materials for industrial packaging applications, due to their increased ductility as PBAT content increases. However, like many aliphatic polyesters, the PLA matrix degrades upon melt processing thus affecting the thermo-mechanical features of the blended material. In this work, we studied the effect of processing at high temperature on the molecular weight distribution, morphology, and thermo-mechanical properties of both homopolymers, as well as the PLA/PBAT 75/25 blend. Notably, different processing conditions were adopted in terms of temperature (range 150-200 C) and other relevant processing parameters (moisture removal and nitrogen atmosphere). Analysis of PLA/ PBAT blends indicated that intermolecular chain reactions took place under strong degradative conditions of PLA, yielding PLA/PBAT mixed chains (copolymers). Increasing amounts of copolymers resulted in improved phase dispersion and increased ductility, as SEM and mechanical tests indicated. Conversely, reduced PLA degradation with less copolymer formation, afforded higher modulus materials, owing to poorer dispersion of the soft phase (PBAT) into the PLA matrix.
2009
Istituto per i Processi Chimico-Fisici - IPCF
INFM
Biodegradable
Reactive blending
SEC
Molecular weight
File in questo prodotto:
File Dimensione Formato  
prod_40417-doc_26379.pdf

non disponibili

Descrizione: Articolo pubblicato
Dimensione 638.93 kB
Formato Adobe PDF
638.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/38203
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact