An extended version of the Maz'ya-Shaposhnikova theorem on the limit as s -> 0+ of the Gagliardo-Slobodeckij fractional seminorm is established in the Orlicz space setting. Our result holds in fractional Orlicz-Sobolev spaces associated with Young functions satisfying the \Delta2-condition, and, as shown by counterexamples, it may fail if this condition is dropped.

On the limit as $s\to 0^+$ of fractional Orlicz-Sobolev spaces

Angela Alberico;
2020

Abstract

An extended version of the Maz'ya-Shaposhnikova theorem on the limit as s -> 0+ of the Gagliardo-Slobodeckij fractional seminorm is established in the Orlicz space setting. Our result holds in fractional Orlicz-Sobolev spaces associated with Young functions satisfying the \Delta2-condition, and, as shown by counterexamples, it may fail if this condition is dropped.
2020
Istituto Applicazioni del Calcolo ''Mauro Picone''
Fractional Orlicz-Sobolev space · Limits of smoothness parameters
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/382370
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 29
social impact