The performance of devices from organic semiconductors is often governed by charge transfer phenomena at structurally and electronically complex interfaces, which remain challenging to access and study with excellent chemical and temporal resolution. Herein, we report the preparation and X-ray spectroscopic characterization of well-defined model organic-inorganic interfaces. We discover an unexpected trend for our systems' associated charge transfer times, and we rationalize this trend with density functional theory calculations. Our findings hold relevance for understanding interfacial charge transfer phenomena in a variety of organic, biological, and bioinspired systems.
Unexpected length dependence of excited-state charge transfer dynamics for surface-confined perylenediimide ensembles
Cossaro Albano;Floreano Luca;Verdini Alberto;Morgante Alberto;
2017
Abstract
The performance of devices from organic semiconductors is often governed by charge transfer phenomena at structurally and electronically complex interfaces, which remain challenging to access and study with excellent chemical and temporal resolution. Herein, we report the preparation and X-ray spectroscopic characterization of well-defined model organic-inorganic interfaces. We discover an unexpected trend for our systems' associated charge transfer times, and we rationalize this trend with density functional theory calculations. Our findings hold relevance for understanding interfacial charge transfer phenomena in a variety of organic, biological, and bioinspired systems.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.