Atomically-defined graphene nanoribbons (GNRs), which are narrow strips of graphene that feature a quantum confinement-induced bandgap, have shown great promise for applications in the next generation of semiconductor devices. Although numerous studies have demonstrated the bottom-up synthesis of all-carbon GNRs, a comparatively limited number of reports have focused on the preparation of nitrogen-doped GNRs, with two general types of architectures demonstrated to date. Herein, we describe the design, synthesis, and characterization of a new class of nitrogen-containing GNRs consisting of repeating tetrabenzopentacene molecular subunits. Our findings may afford additional possibilities and opportunities with regard to the directed bottom-up synthesis of heteroatom-doped, carbon-based nanoscale electronics. (C) 2020 Elsevier Ltd. All rights reserved.
Bottom-up synthesis of nitrogen-containing graphene nanoribbons from the tetrabenzopentacene molecular motif
Cossaro Albano;Verdini Alberto;Floreano Luca;Comelli Giovanni;Morgante Alberto;
2020
Abstract
Atomically-defined graphene nanoribbons (GNRs), which are narrow strips of graphene that feature a quantum confinement-induced bandgap, have shown great promise for applications in the next generation of semiconductor devices. Although numerous studies have demonstrated the bottom-up synthesis of all-carbon GNRs, a comparatively limited number of reports have focused on the preparation of nitrogen-doped GNRs, with two general types of architectures demonstrated to date. Herein, we describe the design, synthesis, and characterization of a new class of nitrogen-containing GNRs consisting of repeating tetrabenzopentacene molecular subunits. Our findings may afford additional possibilities and opportunities with regard to the directed bottom-up synthesis of heteroatom-doped, carbon-based nanoscale electronics. (C) 2020 Elsevier Ltd. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.