Recently, nonthermal excess noise, compatible with the theoretical prediction provided by collapse models, was measured in a millikelvin nanomechanical cantilever experiment [A. Vinante et al., Phys. Rev. Lett. 119, 110401 (2017)]. We propose a feasible implementation of the cantilever experiment able to probe such noise. The proposed modification, completely within the grasp of current technology and readily implementable also in other types of mechanical noninterferometric experiments, consists in replacing the homogeneous test mass with one composed of different layers of different materials. This will enhance the action of a possible collapse noise above that given by standard noise sources.
Multilayer test masses to enhance the collapse noise
Vinante Andrea;
2018
Abstract
Recently, nonthermal excess noise, compatible with the theoretical prediction provided by collapse models, was measured in a millikelvin nanomechanical cantilever experiment [A. Vinante et al., Phys. Rev. Lett. 119, 110401 (2017)]. We propose a feasible implementation of the cantilever experiment able to probe such noise. The proposed modification, completely within the grasp of current technology and readily implementable also in other types of mechanical noninterferometric experiments, consists in replacing the homogeneous test mass with one composed of different layers of different materials. This will enhance the action of a possible collapse noise above that given by standard noise sources.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.