Organic field-effect transistors (OFETs) are key enabling devices for plastic electronics technology, which has a potentially disruptive impact on a variety of application fields, such as health, safety, and communication. Despite the tremendous advancements in understanding the OFET working mechanisms and device performance, further insights into the complex correlation between the nature of the charge-injecting contacts and the electrical characteristics of devices are still necessary. Here, an in-depth study of the metal-organic interfaces that provides a direct correlation to the performance of OFET devices is reported. The combination of synchrotron X-ray spectroscopy, atomic force microscopy, electron microscopy, and theoretical simulations on two selected electron transport organic semiconductors with tailored chemical structures allows us to gain insights into the nature of the injecting contacts. This multiple analysis repeated at the different stages of contact formation provides a clear picture on the synergy between organic/metal interactions, interfacial morphology, and structural organization of the electrode. The simultaneous synchrotron X-ray experiments and electrical measurements of OFETs in operando uncovers how the nature of the charge-injecting contacts has a direct impact on the injection potential of OFETs.

On the Nature of Charge-Injecting Contacts in Organic Field-Effect Transistors

Natali Marco;Prosa Mario;Longo Alessandro;Brucale Marco;Mercuri Francesco;Benvenuti Emilia;Prescimone Federico;Bettini Cristian;Melucci Manuela;Muccini Michele;Toffanin Stefano
2020

Abstract

Organic field-effect transistors (OFETs) are key enabling devices for plastic electronics technology, which has a potentially disruptive impact on a variety of application fields, such as health, safety, and communication. Despite the tremendous advancements in understanding the OFET working mechanisms and device performance, further insights into the complex correlation between the nature of the charge-injecting contacts and the electrical characteristics of devices are still necessary. Here, an in-depth study of the metal-organic interfaces that provides a direct correlation to the performance of OFET devices is reported. The combination of synchrotron X-ray spectroscopy, atomic force microscopy, electron microscopy, and theoretical simulations on two selected electron transport organic semiconductors with tailored chemical structures allows us to gain insights into the nature of the injecting contacts. This multiple analysis repeated at the different stages of contact formation provides a clear picture on the synergy between organic/metal interactions, interfacial morphology, and structural organization of the electrode. The simultaneous synchrotron X-ray experiments and electrical measurements of OFETs in operando uncovers how the nature of the charge-injecting contacts has a direct impact on the injection potential of OFETs.
2020
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
charge-injecting contacts
contact resistance
organic field-effect transistors
chemisorption
gold nanoclusters
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/382991
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 9
social impact