We formulate a non-recursive Darboux transformation technique to obtain the general nth-order rational rogue wave solutions to the coupled Fokas-Lenells system, which is an integrable extension of the noted Manakov system, by considering both the double-root and triple-root situations of the spectral characteristic equation. Based on the explicit fundamental and second-order rogue wave solutions, we demonstrate several interesting rogue wave dynamics, among which are coexisting rogue waves and anomalous Peregrine solitons. Our solutions are generalized to include the complete background-field parameters and therefore helpful for future experimental study.
General rogue wave solutions of the coupled Fokas-Lenells equations and non-recursive Darboux transformation
Baronio Fabio;
2019
Abstract
We formulate a non-recursive Darboux transformation technique to obtain the general nth-order rational rogue wave solutions to the coupled Fokas-Lenells system, which is an integrable extension of the noted Manakov system, by considering both the double-root and triple-root situations of the spectral characteristic equation. Based on the explicit fundamental and second-order rogue wave solutions, we demonstrate several interesting rogue wave dynamics, among which are coexisting rogue waves and anomalous Peregrine solitons. Our solutions are generalized to include the complete background-field parameters and therefore helpful for future experimental study.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.