The Quantum Cascade Laser is becoming a key tool for plenty of applications, from the IR to the THz range. Progress in nearby areas, such as the development of ultra-low loss crystalline microresonators, optical frequency standards and optical fiber networks for time&frequency dissemination, are paving the way to unprecedented applications in many fields. For the most demanding applications, a thorough control of quantum cascade lasers (QCLs) emission must be achieved. In the last few years, QCLs unique spectral features have been unveiled, while multifrequency, comb-like QCLs have been demonstrated. Ultra-narrow frequency linewidths are necessary for metrological applications, ranging from cold molecules interaction and ultra-high sensitivity spectroscopy to infrared/THz metrology. In our group, we are combining crystalline microresonators, with a combined high quality factor in the infrared and ultra-broadband spectral coverage, with QCLs and other nonlinear highly coherent and frequency referenced sources. Frequency referencing to optical fiber-distributed optical primary standards offers astonishing stability values of 10(-16) @1-sec timescales in laboratory environments but several hundred kilometres far away from the primary clocks. A review will be given of the present status of research in this field, with a view to perspectives and future applications.

Controlling QCLs for frequency metrology from the infrared to the THz range

Consolino Luigi;Cappelli Francesco;De Regis Michele;Campo Giulio;Mazzotti Davide;Borri Simone;Giusfredi Giovanni;Bartalini Saverio;De Natale Paolo
2018

Abstract

The Quantum Cascade Laser is becoming a key tool for plenty of applications, from the IR to the THz range. Progress in nearby areas, such as the development of ultra-low loss crystalline microresonators, optical frequency standards and optical fiber networks for time&frequency dissemination, are paving the way to unprecedented applications in many fields. For the most demanding applications, a thorough control of quantum cascade lasers (QCLs) emission must be achieved. In the last few years, QCLs unique spectral features have been unveiled, while multifrequency, comb-like QCLs have been demonstrated. Ultra-narrow frequency linewidths are necessary for metrological applications, ranging from cold molecules interaction and ultra-high sensitivity spectroscopy to infrared/THz metrology. In our group, we are combining crystalline microresonators, with a combined high quality factor in the infrared and ultra-broadband spectral coverage, with QCLs and other nonlinear highly coherent and frequency referenced sources. Frequency referencing to optical fiber-distributed optical primary standards offers astonishing stability values of 10(-16) @1-sec timescales in laboratory environments but several hundred kilometres far away from the primary clocks. A review will be given of the present status of research in this field, with a view to perspectives and future applications.
2018
Quantum Cascade Lasers
Frequency Metrology
Microresonators
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/383331
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact