We analyze the efficacy of modern neuro-evolutionary strategies for continuous control optimization. Overall, the results collected on a wide variety of qualitatively different benchmark problems indicate that these methods are generally effective and scale well with respect to the number of parameters and the complexity of the problem. Moreover, they are relatively robust with respect to the setting of hyper-parameters. The comparison of the most promising methods indicates that the OpenAI-ES algorithm outperforms or equals the other algorithms on all considered problems. Moreover, we demonstrate how the reward functions optimized for reinforcement learning methods are not necessarily effective for evolutionary strategies and vice versa. This finding can lead to reconsideration of the relative efficacy of the two classes of algorithm since it implies that the comparisons performed to date are biased toward one or the other class.

Efficacy of Modern Neuro-Evolutionary Strategies for Continuous Control Optimization

Pagliuca Paolo;Milano Nicola;Nolfi Stefano
2020

Abstract

We analyze the efficacy of modern neuro-evolutionary strategies for continuous control optimization. Overall, the results collected on a wide variety of qualitatively different benchmark problems indicate that these methods are generally effective and scale well with respect to the number of parameters and the complexity of the problem. Moreover, they are relatively robust with respect to the setting of hyper-parameters. The comparison of the most promising methods indicates that the OpenAI-ES algorithm outperforms or equals the other algorithms on all considered problems. Moreover, we demonstrate how the reward functions optimized for reinforcement learning methods are not necessarily effective for evolutionary strategies and vice versa. This finding can lead to reconsideration of the relative efficacy of the two classes of algorithm since it implies that the comparisons performed to date are biased toward one or the other class.
2020
Istituto di Scienze e Tecnologie della Cognizione - ISTC
evolutionary strategies
reinforcement learning
continuous control optimization
natural evolutionary strategies
fitness function design
File in questo prodotto:
File Dimensione Formato  
prod_433008-doc_154639.pdf

accesso aperto

Descrizione: Efficacy of Modern Neuro-Evolutionary Strategies for Continuous Control Optimization
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.7 MB
Formato Adobe PDF
1.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/383355
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 13
social impact