Bioactive materials should maintain their properties during implantation and for long time in contact with physiological fluids and tissues. In the present research, five different bioactive materials (a bioactive glass and four different chemically treated bioactive titanium surfaces) have been studied and compared in terms of mechanical stability of the surface bioactive layer-substrate interface, their long term bioactivity, the type of hydroxyapatite matured and the stability of the hydroxyapatite-surface bioactive layer interface. Numerous physical and chemical analyses (such as Raman spectroscopy, macro and micro scratch tests, soaking in SBF, Field Emission Scanning Electron Microscopy equipped with Energy Dispersive Spectroscopy (SEM-EDS), zeta potential measurements and Fourier Transformed Infra-Red spectroscopy (FTIR) with chemical imaging) were used. Scratch measurements evidenced differences among the metallic surfaces concerning the mechanical stability of the surface bioactive layer-substrate interface. All the surfaces, despite of different kinetics of bioactivity, are covered by a bone like carbonate-hydroxyapatite with B-type substitution after 28 days of soaking in SBF. However, the stability of the apatite layer is not the same for all the materials: dissolution occurs at pH around 4 (close to inflammation condition) in a more pronounced way for the surfaces with faster bioactivity together with detachment of the surface bioactive layer. A protocol of characterization is here suggested to predict the implant-bone interface stability.

The mechanical and chemical stability of the interfaces in bioactive materials: The substrate-bioactive surface layer and hydroxyapatite-bioactive surface layer interfaces

Ferraris, S.;Barbani, N.;Cristallini, C.;Gautier di Confiengo, M;Cazzola, M.;Miola, M.;
2020

Abstract

Bioactive materials should maintain their properties during implantation and for long time in contact with physiological fluids and tissues. In the present research, five different bioactive materials (a bioactive glass and four different chemically treated bioactive titanium surfaces) have been studied and compared in terms of mechanical stability of the surface bioactive layer-substrate interface, their long term bioactivity, the type of hydroxyapatite matured and the stability of the hydroxyapatite-surface bioactive layer interface. Numerous physical and chemical analyses (such as Raman spectroscopy, macro and micro scratch tests, soaking in SBF, Field Emission Scanning Electron Microscopy equipped with Energy Dispersive Spectroscopy (SEM-EDS), zeta potential measurements and Fourier Transformed Infra-Red spectroscopy (FTIR) with chemical imaging) were used. Scratch measurements evidenced differences among the metallic surfaces concerning the mechanical stability of the surface bioactive layer-substrate interface. All the surfaces, despite of different kinetics of bioactivity, are covered by a bone like carbonate-hydroxyapatite with B-type substitution after 28 days of soaking in SBF. However, the stability of the apatite layer is not the same for all the materials: dissolution occurs at pH around 4 (close to inflammation condition) in a more pronounced way for the surfaces with faster bioactivity together with detachment of the surface bioactive layer. A protocol of characterization is here suggested to predict the implant-bone interface stability.
2020
Istituto per i Processi Chimico-Fisici - IPCF - Sede Secondaria Pisa
Istituto di Scienze e Tecnologie per l'Energia e la Mobilità Sostenibili - STEMS - Sede Secondaria Torino
Bioactive materials
Interfaces
Surfaces
Stability
Scratch resistance
Hydroxyapatite
File in questo prodotto:
File Dimensione Formato  
Ferraris 2020 Materials Science & Engineering C.pdf

accesso aperto

Descrizione: articolo peer-reviewed
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 6.82 MB
Formato Adobe PDF
6.82 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/383430
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 34
social impact